
Computer Science

Supporting Online Services in Environments
Constrained by Communication

Amp Mukheijee

November 4, 1998
CMU-CS-98-172

I „fffgl

*m

lSS0

W**

■<&0-
tMf

fc-irv

«rtSK

te^

Carnegie
ellon

l.«*nim

k'"'■'■""'

ÖISTRIBUTION STATEMENT A
Approved for Public Release

Distribution unlimited

TVfTO QUALTTT TKTPnspmnj'n i

Supporting Online Services in Environments
Constrained by Communication

Arup Mukherjee
November 4, 1998

CMU-CS-98-172

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Daniel P. Siewiorek, Chair

Adam Beguelin
James H. Morris

Asim Smailagic, Institute for Complex Engineered Systems

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Copyright © 1998 Arup Mukherjee

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA) under agreement num-
bers DABT 63-95-C-0026 and DASG 60-96-C-0068, and by AT&T.
The views and conclusions contained herein are those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA or AT&T.

Keywords: Mobile computing, Control-oriented programming, World Wide Web, proxies,
constrained communication

Vi vVWellon School of Computer Science

IV
DOCTORAL THESIS

in the field of
COMPUTER SCIENCE

Supporting Online Services in Environments
Constrained by Communication

ARUP MUKHER JEE

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

^^A f. !<??&>
DATE

DEPARTMENT HEAD
/V^/TS»

DATE

APPROVED:

r
/<£ - &/- ^<r

DEAN DATE

ABSTRACT

With the recent rapid growth of the World Wide Web, the advent of commodity internet

access via modems, and the slower but steady proliferation of mobile computing devices,

more and more users are accessing internet services from computationally capable ma-

chines connected via low-speed communication links. While many such services only

offer access to static, unchanging documents, the number of "online " services offering

access to frequently updated information is growing rapidly. While systems have been

developed to optimize document access in the presence of constrained communication,

their approaches do not handle access to online services well.

This thesis examines the problem of designing online services to be accessed over con-

strained communication links by computationally capable clients. A taxonomy of appli-

cation classes has been developed to define the distinguishing characteristics of online

services, and recognizes that clients and applications often interact not just to exchange

data, but also to control each other's actions or resources. This recognition is the basis

for two new models of application structure. The two models are proposed as alterna-

tives to established models and form the basis for the application structuring techniques

developed and evaluated.

Support for these application structures has been implemented by the Oasis system,

which has been designed to allow the easy deployment of online services as applications

within the existing framework of the World Wide Web. An examination of some Oasis

applications has demonstrated the qualitative and quantitative advantages of control-

oriented design as a flexible approach to reducing the communication requirements of

online services. For example, a weather data browser designed explicitly to take advan-

tage of Oasis, when partitioned in a control-oriented manner, was able to eliminate 95%

of the steady-state communication usage of alternative implementations. Opportunities

for smaller reductions in communication usage have also been observed by proxying

communications and automatically leveraging the Oasis infrastructure without explicit

application support.

Acknowledgements

This thesis represents an achievement made possible thanks to the help, support, advice and input
of many people over the last several years. First and foremost, I thank my advisor, Dan Siewiorek,
for his guidance, support, and professionalism throughout my graduate school experience. I have
learned much from him through our joint exploration of new technical frontiers, and through my
watching him competently, patiently, and effectively guide several research efforts through good
times and bad.

I am also grateful to the members of my thesis committee: Adam Beguelin, Jim Morris, and
Asim Smailagic. My discussions with Adam over the years produced many insights that helped
shape my research direction. In all of my interactions with Jim, he has never failed to ask a
thought-provoking and original question relevant to the situation at hand. Time and time again,
Asim has proven himself to be one of the most helpful and energetic people I have met. I really
appreciate all of the occasions on which he has come through for me on short notice.

While faculty featured prominently in my graduate school experience, I have learned and benefit-
ted just as much from my interactions with several fellow graduate students. Claudson Bornstein,
who for many years was my.officemate, best friend, and confidant is at the top of that list of
friends. I also owe much to other close friends I met at CMU (Rujith DeSilva, Darrell Kindred,
and Po-Jen Yang) and to my former officemate Sergio Campos. I have shared many educational
and extracurricular experiences with all of them. It would be very difficult to list all of my friends
that added to the fun and richness of my experiences at CMU. From amongst them, however, I
am particularly glad to have met Somesh Jha, Manish Pandey, Girija Narlikar, Rich McDaniel,
Eka Ginting, Erik Seligman, Henry Rowley, Karen Haigh, Rob Driskill, and Hao-Chi Wong.

From day to day, the computer science department at CMU has often seemed to run by magic.
This means special thanks for making the nontechnical aspects of my life as trouble-free as
possible are due to Sharon Burks, Laura Forsyth, Catherine Copetas, Karen Olack, and all of the
amazingly accomodating CS computing facilities staff that I have had occasion to deal with.

iii

I might not have come to CMU if not for the encouragement of my friend and ex-boss, Murthy
Devarakonda. I am fortunate to have worked with someone as committed as he was to helping
me achieve my own goals in life.

Finally, much credit is due to my family. My parents inspired me to initiate my quest for a thesis,
and supported and encouraged me in all of my endeavors. More recently, my in-laws have added
their encouragement to that of my parents. Most important of all, the love and support of my
wife, Nita, have never faltered in the face of somewhat more intimate exposure to the realities of
finishing one's doctoral research. The creation of this thesis, like all efforts we will share in life,
is as much her accomplishment as it is mine.

Contents

1 Introduction 1
1.1 Summary of Related Work 3
1.2 Thesis Outline 4
1.3 Summary of Research Contributions 5

2 Background 7
2.1 Models and Motivation 7

2.1.1 The Target Environment 8
2.1.2 Application Functionalities 9
2.1.3 A Taxonomy of Applications 10
2.1.4 Models of System Structure 12
2.1.5 Control-oriented Models 13
2.1.6 A Case for Control-oriented Applications 15

2.2 Application Structures 17
2.2.1 Caches of Proxy Objects 17
2.2.2 Composable Services 18
2.2.3 Controllable Resource Managers 19
2.2.4 Other Techniques 20

2.3 Related Work 21
2.3.1 Similar Artifacts 21
2.3.2 Other Approaches to Application Partitioning 23
2.3.3 Similar Models of Application Structure 24
2.3.4 Object-oriented Technology and Control 25

3 Architecture of Oasis 27
3.1 Introduction 27
3.2 Basic Agent Mechanisms 29

3.2.1 Agent Recognition and Loading 30

3.2.2 Minimal Agent API 31
3.2.3 Inter-Agent Interaction and Security 33
3.2.4 Arbitrary Agent Placement 34

3.3 Agent Composability 34
3.4 Management of a Host's Physical Resources 35
3.5 Agent Integration with the World Wide Web 36

3.5.1 Filter Agents 36
3.6 An Example Agent 39

3.6.1 Class FtpRedirect 40
3.6.2 Class FtpRedirectUC 43

3.7 Implementation Summary and Limitations 45

4 Evaluation 47
4.1 Goals 47
4.2 Rationale 48

4.2.1 The Oasis Communication Benchmark 49
4.2.2 The Controllable Cache Manager 50
4.2.3 The Weather Browser 51

4.3 Experiment 1 52
4.3.1 Architecture of the Communication Benchmark 52
4.3.2 Characterization of Costs and Benefits 55
4.3.3 Experimental Setup 56

4.4 Experiment 2 58
4.4.1 Architecture of the Controllable Cache Manager 58
4.4.2 Static and Dynamic Data 59
4.4.3 Experimental Setup 61

4.5 Experiment3 62
4.5.1 Architecture of the Weather Browser 62
4.5.2 Application Structure and Partitioning 63
4.5.3 Implementation Overview 65
4.5.4 Experimental Setup 68

5 Experimental Results 75
5.1 Experiment 1: Oasis Costs and Benefits 75

5.1.1 Experimental Synopsis 75
5.1.2 Results and Analysis 76

5.2 Experiment 2: Diff-based Cache Update 84

5.2.1 Experimental Synopsis 84
5.2.2 Results and Analysis 85

5.3 Experiment 3: Weather Browsing 88
5.3.1 Experimental Synopsis 88
5.3.2 Results and Analysis 90

5.4 Lessons Learned 97

Conclusions 99
6.1 Contributions 99
6.2 Future Directions 102

Chapter 1

Introduction

Over the last few years, the explosive growth of the internet and World Wide Web have signifi-
cantly increased the accessibility of networking to technologically unsophisticated users. Many
of these newcomers to networking do not use their computers for data creation. Browsing (61%),
information gathering (81%), education (52 %), and entertainment (46%) were among the most
frequently mentioned Web activities in a recent survey [24] of Web users — and these statistics
may be underestimates, given the self-selecting nature of the survey. Almost 70% of the partici-
pants in that survey were connected to the internet by relatively slow (33.6 Kbits/sec or slower)
links, running PPP [46] or SLIP [40] over dialup phone lines. As a greater segment of the general
population is brought online, both the proportion of users that want to access (but not to modify)
online data and services, and the proportion of users that are connected by relatively slow links,
continues to increase.

A second distinct community reflects a similar pattern. Users of mobile computers typically
cannot use their machines for data creation due to the limited input capabilities of most truly
mobile hardware. However, mobile computing devices exhibit much promise as communication
devices, and as interfaces to services and data provided by a surrounding network of static servers
[51, 56, 44]. However, the wireless networking technology available to mobile computers today
is also relatively slow compared to that of wired networks. Users of mobile computing thus also
contribute to the growing set of network users, connected via relatively slow links, who do not
primarily perform data creation tasks.

Traditionally, applications built for bandwidth-constrained environments usually reflect either the
terminal or the workstation models [13]. Systems such as the Berkeley Infopad [51] and Xerox

CHAPTER 1. INTRODUCTION

<D

(Communication Link]

(a) traditional client-server model

(b) new model recognizing control interactions

Figure 1.1: The introduction of a communication link partitions an application. Earlier models have treated
the communication across this link as homogeneous movement of "data", as in (a). The work described
herein treats the partitioned application as consisting of Data Manipulation (D) and Control Processing
(C) components. Communication between data manipulation components (i.e. the movement of pure

application data), represented by the thick arrows, is distinguished from interactions between control
processing components (i.e. "movement of control"), represented by the thin arrows.

PARCtabs [44] embody the terminal model, which suggests that a mobile machine should be
regarded solely as an output device, that all manipulation of data should be performed on the
server network, and that the communications link be used to return the resultant output. This
model is also typical of most online services currently deployed on the World Wide Web. On
the other hand, the workstation model, exemplified by systems such as Coda [43], suggests that
a mobile machine be the site of all data manipulation, and that its communications link be used
solely to access remote data. Web browsers originally did not allow a remote service to take
advantage of the computational capabilities of the machine the browser was running on; today,
major browsers have this ability in a limited form although most online services fail to leverage it
extensively. The ability to partition applications across a communications link warrants the study
of new application models.

1.1. SUMMARY OF RELATED WORK

This research differs from previous work in recognising that not only does communication par-
tition the data manipulation (or "computation") of an application, but that it also partitions both
internal and external control interactions of that application. Control interactions are those inter-
actions between a controller entity and its target entity to produce an effect in the environment
of the target entity. This distinction from prior work is depicted graphically in Figure 1.1. For
example, a weather database service might control the operation of a map browser client running
remotely, instructing the browser to display a specific map before instructing it how to augment
that map with current meteorological data. An examination of the partitioning of control in-
teractions by communication produces two new models of applications and services deployed
in a communication-constrained environment. Accordingly, two new application models have
been defined, supported in a Web-based application framework called Oasis, and operationally
evaluated through the measurement of sample applications.

A summary of related work is presented in Section 1.1, followed by an outline of the thesis in
Section 1.2, and a summary of research contributions in Section 1.3.

1.1 Summary of Related Work

Current and past research efforts of relevance to the design and deployment of online services in
communication-constrained environments can be classified into three categories:

1. Efforts to support the downloading and execution of untrusted mobile code, e.g. [49, 50,
54, 16, 57].

2. Efforts to partition applications based on changing the data communicated, e.g. [56, 15, 9,
19, 60].

3. Ad-hoc manual application-specific optimization of code layout, e.g. [7].

The research presented here encompasses and extends the goals of the first and third items, and
is complementary to the efforts of the second. Important differences between this work and
previous efforts are:

1. Earlier projects to support the execution of untrusted downloaded code usually have con-
sidered their efforts neither a mechanism for the partitioning of an application nor a means
to manage the use of shared resources on the service-client path.

CHAPTER 1. INTRODUCTION

2. No prior effort has focussed on the use of control interactions as the hints to be used in
deciding on application partitions.

3. Prior efforts at application-specific optimization have occasionally yielded control-oriented
partitions. However, this result has been achieved through ad-hoc design rather than
through the use of general building blocks.

The purpose and functionality of the Oasis system differs from all other systems that have at-
tempted to support downloaded code, or to provide proxy-based or network-based computation.
The structure of Oasis reflects these differences. Efforts that have considered similar application
scenarios have not investigated these applications in the context of a proxy-based network of
computationally-capable resources. As a result, these efforts focussed only on the data transfer
aspects of the applications studied, and have typically produced results that are subsumed by, or
could complement, the work presented.

These differences are documented in greater detail in Section 2.3.

1.2 Thesis Outline

This thesis examines current approaches to implementing applications and services in
communication-constrained environments, presents two new models of application structure, and
documents the implementation and evaluation of an infrastructure to support the two models in
the context of the World Wide Web.

Chapter 2 presents the motivation for, and the models underlying, the thesis research. The target
computing environment is defined, and existing approaches to application deployment are exam-
ined. Two novel models of application structure are then described and analyzed, producing a
list of benefits that may be realizable by applying them. A set of three important building blocks
(augmented by two lesser ones, and three that were not within the scope of this study) is presented
as a basis from which application structures can be constructed. Finally, the chapter presents a
discussion of work related to this research, i.e. work that has produced artifacts that are simi-
lar to Oasis, work related to application partitioning and work addressing models of application
structure.

Chapter 3 describes the architecture of the Oasis system, and the facilities that Oasis provides for
the construction of agent-based applications for access of WWW services over a communication-

1.3. SUMMARY OF RESEARCH CONTRIBUTIONS

constrained link.

Chapter 4 documents the sample applications that were chosen for the evaluation of the Oasis
architecture, and their use of the Oasis building blocks.

Chapter 5 analyzes the performance of the Oasis infrastructure in the context of the demonstration
applications.

Chapter 6 summarizes the results of the research, and suggests areas for further exploration.
Although the Oasis system provides a flexible platform upon which Web applications can easily
be deployed in a control-oriented manner, there is potential for further ease of use by developing
higher level components based on the Oasis foundation.

1.3 Summary of Research Contributions

The research described in this thesis makes conceptual contributions to the existing body of
knowledge as well as practical contributions, arising from the implementation of the prototype
system, to the body of tools for experimenting with online services in the context of the World
Wide Web.

Conceptual Contributions

The foremost conceptual contribution of this work is an understanding of the importance of con-
trol interactions when partitioning an application across multiple computationally capable enti-
ties separated by constrained communication channels. This understanding is embodied in design
principles and in a proposed minimal set of simple building blocks from which services can be
constructed in a control-oriented manner. The use of these building blocks has been demonstrated
through the construction of a number of example services.

In addition, this work provides insight into how to harness client-side and intermediary computa-
tion capabilities in any distributed system, particularly in one that is communication-constrained
at some points. The research approach taken demonstrates that proxy-based interaction is a vi-
able and flexible mechanism for the compatible addition of control-oriented partitioning to an
existing distributed system. The work also exemplifies one possible set of core proxy services
that form an extensible framework of sufficient flexibility to support the control interactions of

CHAPTER 1. INTRODUCTION

arbitrary client applications.

Practical Contributions

The main practical contribution of this research is the implemented artifact itself: the Oasis
proxy server which is capable of hosting, in an isolated environment, specialized agent code
supplied by service providers, end-users, or other agent code. The proxy is capable of recognising
other similar proxies. As such, the proxy forms the basis for a network of computationally
capable entities inserted between users and service providers. This infrastructure is suitable for
the implementation of any web-based system that needs to strategically place "transducers" into
the network. In the case of the research described, the transducers are mainly agents designed
to localize adaptations needed to accomodate a slow network link, and to minimize the effects
thereof. The Oasis proxy also provides services necessary to support inter-agent interaction,
agent interaction with resources available in proxy nodes, and some agent interaction with the
processing of the HTTP protocol itself.

In addition to the Oasis proxy server, Oasis includes a small library of utility functions and
interfaces useful for the construction of agents. This library is external to the Oasis proxy itself,
but provides functionality that would otherwise need to be reimplemented in most nontrivial
agent designs.

Finally, a number of the implemented examples are useful even to those with no research interest
in Oasis. For example, the Oasis proxy, initialized appropriately, can be configured to intercept
and redirect FTP requests, filter out unwanted graphics (particularly commercial messages), pro-
vide client-side caching with difference-based updates, and protect the end-user's identity. All of
these capabilities are of interest to WWW users online via modem connections; they may save
several seconds of access latency for every graphical advertisement eliminated and for every page
that can be updated by diffs rather than completely refetched.

Chapter 2

Background

This chapter presents the motivation, reasoning, and prior work relevant to the research in this
thesis. Section 2.1 opens by examining and classifying applications in some communication-
constrained environments, using the resultant taxonomy to generate four models of application
system structure. It concludes that two of the models have been widely employed in past work,
whereas two others, arising from a consideration of the control interactions between application
components, have been overlooked or hitherto unidentified. The section ends by arguing that,
in a communication-constrained environment, application design using the two new models may
have many benefits. Section 2.2 then presents a set of building blocks useful for constructing
applications having the structure specified by the new models. These building blocks are the
ones that drove the design of the Oasis infrastructure. Finally, Section 2.3 presents related prior
and contemporary work relevant to this research.

2.1 Models and Motivation

This section presents definitions and models underlying the research approach. The defining
characteristics of the environment studied are first listed. It is then argued that applications in
the target environment span one or more of three types of functionality: data manipulation,
communication and control. These three types of functionality are defined, and used to generate
a taxonomy of application classes which in turn generates four system models. Two of these
models are the traditional terminal and workstation models which are briefly presented. Two new
models, the user agent and server agent models, are then described. Support for these two models

CHAPTER 2. BACKGROUND

defines the the building blocks for agent-based applications enabled by the Oasis framework. This
section concludes by examining some of the benefits that control-oriented applications are able
to realize in the target environment.

2.1.1 The Target Environment

The target environment is a distributed information system composed of service providers and
clients. The service providers run servers interconnected by a (relatively) high speed network,
and provide services to the pool of users. Users connect to the provider network over links that
are slower than those of the backbone network, usually significantly so. Each user connects to the
network using a computationally capable unit - a workstation or mobile machine with processing
ability comparable to that of a small workstation. Each user's unit has some storage space (cache)
and may be connected to other resources (such as a CD-ROM drive). Machines are typically not
shared between users, and each user owns the resources associated with his unit(s). Users are
not primarily concerned with creating data or services, but rather with accessing information and
services available to them.

Several examples of such environments currently exist. The World Wide Web exhibits this ar-
chitecture, as do many experimental mobile computing environments. Most commercial online
services in existence today (e.g. America Online) also fall into the same category. All of these
examples have experienced phenomenal growth in the past few years. Networking has become
part of mainstream personal computing, and this scenario has been brought to prevalence with it.

Oasis has been constructed in the context of the World Wide Web. The Web consists of a mul-
titude of independent information servers, accessed by users who run a Web browser to contact
servers and retrieve information. A browser usually presents a server with a request for informa-
tion, specified via a Uniform Resource Locator, or URL [29], and processes the returned infor-
mation appropriately. Depending on the type of information returned, the browser may format
the data and display it to the user immediately (as is usually the case for an HTML [30] docu-
ment), or it may hand the data to an appropriate helper application (e.g., a postcript document
would usually be given to a postscript previewer for display). A Web browser serves primarily as
a mechanism for the the retrieval and presentation of data, which is able to recognize and follow
hypertext links in that data. Major graphical Web browsers (i.e. Netscape [32] and Microsoft's
Internet Explorer [31]) also offer a limited environment for the execution of safe "applet" code
downloaded from Web servers.

2.1. MODELS AND MOTIVATION

The remainder of Section 2.1 presents four application models. In presenting these models, mo-
bile computing is often used as a source of example applications and scenarios. This is because
the issues of application structure have been considered to a greater extent in the mobile com-
puting literature. The Web was originally conceived as a mechanism for the dissemination of
data. Many interactive service applications (e.g. cataloging services) have nevertheless appeared
on the Web, and are encouraging the development of an infrastructure to support them. The
development of forms support for Web browsers was the first such step, and the appearance of
mechanisms to support interactive content was the second. Although many examples are drawn
from mobile computing, the models presented also apply to the World Wide Web and to all of
the other aforementioned environments.

2.1.2 Application Functionalities

Mobile computing technology is often (e.g., in [26]) regarded as the convergence of tools from
two distinct walks of life, namely communications (e.g., telephones and pagers) and data manip-
ulation or computation1 (e.g., laptop computers). Many mobile applications built to date reflect
this heritage, and much effort has been devoted to enhancing traditional "desktop" applications to
reap the benefits of mobility (e.g. via the Coda filesystem [43]), and to extending pagers and mo-
bile telephones to exploit additional computing power (e.g., PARCtabs used to read e-mail [44]).
Even the computational models underlying these applications usually focus on how exactly the
data manipulation performed by an application is partitioned by the communication it performs.
However, mobile computation can also be viewed as the convergence of remote controls and
laptop computers. This view leads to a richer set of computational models and applications.

'Control' is the human or automated guidance of a process that affects its environ-
ment.

Control is an aspect of everyday life that is just as pervasive as communication or computation.
Mechanical control interfaces are found on most nontrivial human tools, in the form of buttons,
dials, sliders, LCDs, etc. Some control interfaces have been integrated with communications
technology, leading to devices such as remote controllers for televisions. When computational
capability is associated with an end-user of a tool, or with the tool itself, the possibility of inte-
grating computation and control arises.

lrThe term "data manipulation" is often used in preference to "computation" to avoid confusion with the multitude
of definitions that have been applied to the latter term in other contexts.

10 CHAPTER 2. BACKGROUND

Mobile computation offers the possibility of such integration, leading to a new realm of applica-
tions. These new applications are not restricted to mechanical objects. Rather, control-oriented
technology offers an alternative paradigm for accessing any object capable of digital commu-
nication, whether it is an intelligent toaster, or a network-accessible vehicle guidance system
implemented entirely as a software database application.

Applications can be grouped into a taxonomy based on the three converging technologies.

2.1.3 A Taxonomy of Applications

Communication, data manipulation, and control are three application domains for which many
mechanical and electronic tools exist, including most computing applications constructed to date.
The three domains are not mutually exclusive, and some applications serve purposes arising from
the intersection of two or of all three. The relationship between the domains, as depicted in
Figure 2.1, generates seven application classes:

I Pure Data Manipulation: e.g., a sorting program.

II Pure Communication: e.g., a pager, or mobile telephone. Simple fetches of Web pages
are also pure communication.

HI Pure Control: e.g. operating an oven, driving a car.

IV Document Passing: Two data-manipulating entities exchanging data, e.g. a system run-
ning Coda [43]. Most server-client scenarios fall into this category.

V Remote Control: Simple control occurring over a communications link, e.g., a television's
remote controller, which just encodes keypresses onto its infrared output.

VI Guided Data Manipulation: A data manipulation that responds to input instructions, e.g.,
most interactive programs, such as an interactive database browser.

VT! Collaborating Services: Applications consisting of at least two. communicating entities,
wherein at least one entity is controlling another. Control commands and/or data may
be flowing across the communications link, e.g., a postscript program downloaded to a
postscript printer, which executes the program and prints the output. In this application,
the control is unidirectional only, and flows from a workstation to the printer. Bidirectional
control is also possible. Currently, this class of application is not very common in the

2.1. MODELS AND MOTIVATION 11

Data
Manipulation Communication

Control

Legend:
I ■ pure data manipulation IV - data passing

II - pure communication V - remote control
III - pure control VI - guided data manipulation

VII - collaborating services

Figure 2.1: Three intersecting application arenas, and the resultant application classes.

world of mobile computing. In the context of the World Wide Web, the advent of browser
support for Java applets has resulted in the appearance of a number of limited examples of
this application class. The Oasis system described in this thesis is an enabling technology
for more complex collaborating services applications in the context of the Web.

Applications are not constrained to being of a single class, and may be composed of multiple
phases of distinct classes. In fact, those that initially appear to be a system of collaborating
services (class VII) often fall into this category. For example, the use of Netscape to query a
database on the World Wide Web often consists of a guided data manipulation (class VI) phase (a
search that takes some parameters) followed by a pure communication (class II) phase (transfer
of the result to the user).

The class of an application may also vary with the granularity at which it is examined. Complex
systems can usually be broken down into several independent subsystems, each of which is an
"application" in its own right. Each subsystem thus falls into one of the seven classes, which

12 CHAPTER 2. BACKGROUND

is not necessarily that of the composite application. In decomposing a system this way, care
must be taken to select a level of granularity useful for characterizing behavior in terms of the
system model being employed. At the finest granularity, every application is composed of pure
communication, computation, and data manipulation phases. At the coarsest granularity, every
application has only a single class. For simple applications, the coarsest level may be appropriate.
Usually, however, neither of the extremes conveys any useful information, and a point in between
is appropriate. For the purposes of applications developed for Oasis, the application developer
can choose to draw subsystem boundaries along those between classes, or at a coarser level, along
boundaries delineated by interfaces.

The evaluation of the Oasis system, presented in Chapter 4, examines Oasis in the context of
pure communication and collaborating services applications. The evaluation first examines the
overhead incurred by unmodified pure communication Web accesses and document passing Web
accesses when using the Oasis proxy. It subsequently presents the benefits obtainable by automat-
ically converting pure communication and document passing Web applications to collaborating
services applications through the use of controllable caching, i.e. through the introduction of an
intermediate control and data manipulation step. Lastly, Oasis is evaluated in terms of its ability
to support Web applications that are explicitly designed to be collaborating services applications,
and in terms of the benefits those applications realize relative to alternative implementations.

2.1.4 Models of System Structure

A "system model," or "model of computation" arises when attempting to realize an abstract
application class in the presence of the constraints of the physical world. For example, many
existing models of mobile computation arose from attempts to realize document passing (class
IV) applications on current mobile computing hardware.

An application that falls into the communications domain as well as another domain is imme-
diately faced with the issue of how the communication partitions the other components of the
application. For example, a document passing (class IV) application's designer must decide ex-
actly how much manipulation of data is done at each end of the communication channel. In
an environment with infinite bandwidth, zero-latency communication, this issue would not have
been very important. However, most clients of the World Wide Web, and most current mobile
computing devices, have limited communications capability, and the resolution of this issue is
the characteristic that differentiates models.

2.1. MODELS AND MOTIVATION 13

In a communication-constrained environment, the communication partitions the rest
of the application.

Two commonly cited models, the "terminal" and "workstation" models, as described by [13],
represent the two extremes of partitioning. The terminal model of mobile computing views mo-
bile machines as purely input and/or output devices, which relay all data to a remote server (i.e.
on the other end of the communication channel), and display any results returned. No data ma-
nipulation is done on the mobile unit itself. The workstation model, on the other hand, describes
an autonomous mobile unit that communicates with remote servers only for the purposes of ob-
taining data. No manipulation of data is performed on the servers themselves. Other models lying
in between the two extremes, such as "terminals with the possibility of downloading some code,"
[17] have been considered, but have not become very popular. The workstation model has also
spurred the development of submodels converting pure data manipulation (class I) desktop appli-
cations to document passing (class IV) mobile applications, with varying degrees of application
awareness (e.g., low awareness in the case of Coda [43], and high awareness in [17]).

2.1.5 Control-oriented Models

Control-oriented applications, like communications-oriented applications, must, by definition,
span at least two entities, although the two entities need not be physically separated. However,
the distinction between controller and controllee ensures that there is a well-defined interface, or
control protocol, between the two. The distinction also allows the two entities to be separated by
a communications channel, producing a partitioning of control processing in much the same way
that the introduction of a communications channel can create a partitioning of data manipulation.
In applications that perform both data manipulation and control processing, the introduction of
finite-capacity communication channels produces a two-dimensional range of computing models.
The extreme points of that range, as applied to an application running in a mobile environment,
are delineated in Table 2.1.

The "terminal" and "workstation" models shown in the table are functionally equivalent to the
more commonly referenced models of the same name (see Section 2.1.4), although the original
models were derived with no consideration given to control processing. The two new models are
characterized in terms of agents.

An agent is a mechanism to allow tranfer of control across a communication link.

14 CHAPTER 2. BACKGROUND

Site of control processing
Site of data manipulation

Mobile Machine Static Server

Mobile Machine Workstation User agent

Static Server Server agent Terminal

Table 2.1: The models at the four extremes in the partitioning of control processing and data manipulation.

Basically, an agent allows execution of a sequence of actions on one side of a communications
channel under the control of the entity at the other end of the channel. For example, the "user
agent" model is a scenario in which a mobile machine (the "user") acts only to guide an appli-
cation whose data manipulation occurs entirely on the server system (e.g., the mobile machine
might instruct the server - a microwave oven - to determine via database lookup how long it takes
to cook Swedish meatballs, and to then run the oven for that length of time.)

The "user agent" and "server agent" models represent diametrically opposite extremes in the
division of control processing among two application components, i.e. unidirectional control.
Many of the example control applications given are also unidirectional, and indeed most control
applications developed to date are unidirectional. However, this is probably due to the lack of
computational power in current controllers - a situation which is changing as mobile computers
become more prevalent. Control-oriented applications exploiting bidirectional control are well
suited to current mobile computing hardware, as described in the next section.

Bidirectional control is the relationship between two entities that both control, and are controlled
by, each other. The relationship is best visualized as a partitioning of the control processing in
an application, once again arising from the introduction of communication channels, as depicted
in Figure 2.2. In practice, bidirectional control can be treated adequately by modelling it as the
concurrent existence of user and server agents in an application.

Lastly, it should be noted that although control-oriented applications are characterized by the
existence of a controller/controllee interface, the nature of this interface is unspecified. Specific
implementations further distinguish models of control-oriented computation. For example, the
controller might employ a "single action at a time" (RPC-like) interface to the controllee, or
it might employ a "remote-execution" model, wherein arbitrary amounts of control code are
shipped to the controllee to regulate its actions. The Oasis architecture enables the separation of
controller and controllee, leaving the control mechanism unspecified. Accordingly, either type of
control relationship may be found between Oasis applications and agents.

2.1. MODELS AND MOTIVATION 15

A document passing (class IV) application, e.g. Coda

0 c

A remote control (class V) application, e.g. a tv remote

A complex collaborating services (class VII) application

Figure 2.2: A more general model of an application: control(C) and data(Z>) processing can be regarded

as the nodes of a graph, with an arbitrary number of partitions induced by communication. Communication-
induced partitions are indicated by jagged grey lines. Nodes marked 0 are nodes at which nothing other

than I/O operations occur, i.e., no control processing or data manipulation occurs, but interactions may be
forwarded to another node, or, as in the tv remote exemplified above, forwarded to the external environment.
The edges of the graph represent interactions between components, either local (e.g. procedure call), or

across a communication boundary (e.g. remote procedure call, message passing). Control interactions
(emanating from a control node) are represented as thin black edges, whereas data interactions (between

data manipulation nodes) are represented by thicker grey edges.

2.1.6 A Case for Control-oriented Applications

Design of applications in a control-oriented manner differs from traditional, data-directed design
mainly in that the application designer is encouraged to exploit the computational abilities of both
the server and the client hardware (and potentially even the resources provided by the network
in between them). True control-oriented designs are possible when the application can be split
into two or more appropriately interacting pieces. The target environments differ from local area

16 CHAPTER 2. BACKGROUND

networks in that communication is often slow, has a high latency, and may be unreliable - so much
so that appropriate application partitioning can significantly affect the usability of the result.
An application partitioned based on control-oriented considerations may realize the following
benefits:

1. Reduced bandwidth requirements. The controller/controllee separation should reflect the
spatial locality of data accesses, allowing movement of instructions to be traded against the
movement of larger amounts of data. In addition, some types of data are algorithmically
generatable from more compact representations; a control-oriented design can take advan-
tage of such a characteristic, employing the resources of the data recipient to generate the
actual data when required. For example, a Web server allowing a user to navigate a maze
might download a textual representation of the maze, along with an algorithm to generate
graphical views when required, in lieu of the more traditional approach wherein the server
returns a complete image for every move the user makes.

2. Reduced latency in interactions. By allowing the local machine, or another machine ac-
cessible with low overhead, to perform some of the computation, unnecessary roundtrips
to the server can be eliminated, improving overall latency of interaction. For example, the
maze application above could eliminate a roundtrip to the server on every move made by
the user. Rather, it would require a refresh of the textual representation whenever the user
wandered beyond the confines of the textual description made available to it.

3. Improved service scalability. By moving computation from the servers to the clients, the
workload on each server is reduced, potentially allowing each server to handle greater
numbers of clients.

4. Isolation of resource-aware code. Client platforms often supply very different resources
to fulfill similar roles. This is especially true in mobile computing, where a great amount
of diversity exists in the input and output devices available. Control-oriented partitioning
tends to separate resource-specific code from the bulk of the application. This partitioning
provides a clean abstraction to allow seamless support for a multitude of interface devices
- only the machine attached to the device need know the specifics of its own capabilities.

5. Data-directed utilization of client resources. Clients that are designed without provisions
for server control often benefit from simple heuristic-based resources available at the client,
such as caching. However, these resources can be exploited more efficiently (to reduce
communication) if the server is allowed to supply hints for their control. This is especially
so in the presence of data that is at least partially algorithmically described. For example,

2.2. APPLICATION STRUCTURES 17

an "intelligent" cache manager might be allowed to understand the fact that in a weather
map, only the weather data itself expires after a certain amount of time - the image of the
map itself is unchanged. Upon a cache miss, only the weather data needs to be refetched,
rather than the entire image. Depending on the format of the weather data, such intelligent
control of client-side resources could produce a substantial reduction in communication.

Of course, other benefits are possible depending on the specific application and/or application
domain. For example, user and server agents, in a mobile environment with an unreliable com-
munications link, might be used to define error-recovery schemes that are unnecessary for a
client on a local area network. The benefits mentioned above, however, are realizable in any
communication-constrained environment with computionally-capable clients.

2.2 Application Structures

This section presents a set of techniques that applications can employ under the Oasis infras-
tructure to achieve some of the benefits listed in Section 2.1. The Oasis prototype enables all of
these techniques, and has been evaluated partly in terms of its ability to support most of them.
Sections 2.2.1, 2.2.2, and 2.2.3 describe techniques that collectively form a core set providing
the flexibility to support a wide variety of control-based applications. Section 2.2.4 describes
other techniques that are secondary to the core techniques because they have proven particularly
useful within the Oasis framework but would not necessarily be as important in every control-
oriented infrastructure, because they can be regarded as a useful extension to one of the Oasis
core techniques, or because they would be useful to a class of applications that is noteworthy, but
smaller than the class of applications that can exploit the core techniques. The Oasis evaluation
applications exploit all of the core techniques described and the first two of the five techniques
listed in Section 2.2.4.

2.2.1 Caches of Proxy Objects

Proxy objects represent a simple type of agent that can be used to build services in a control-
directed manner. Most often, a proxy object is an object created at the user's machine by a
service. From the point of view of the service, it is an interface that the service is aware of, and
can manipulate or destroy as necessary. From the point of view of the client, the object presents
an interface to one or more capabilities of the service. For example, a trivial proxy object might

18 CHAPTER 2. BACKGROUND

serve only to accept requests on behalf of the service, forward the requests to the service, and
return the result when available. A more complicated object might perform local computation
and return a result itself in situations where contact with the server is unnecessary. Proxy objects
are cached on the machine where they exist, and may be destroyed, if necessary, to reclaim
resources. Java applets [10], supported by many Web browsers, represent a mechanism by which
simple proxy objects, isolated from all other services in the network, can be implemented.

Although proxy objects are most useful to services, the duality of the user and server agent
models implies that a client machine could also create a proxy object at a server. For example, a
resource (such as a Web browser) or local application running on a user's machine may wish to
establish an object at a server's machine in order to allow the service to manipulate the resource
directly. Such a scenario might arise if a browser wished to be instructed to fetch a document
automatically upon the satisfaction of some condition at the server (such as the receipt of some
data, or drop in load to an acceptable level).

It should be noted that proxy objects are best suited to their role as client-side service interfaces,
because they enable the user, and agents acting on behalf of the user, to interact with multiple
services and resources simultaneously, using the set of objects known to the user's machine. Such
interaction might, for example, allow services to share data with one another, or to augment each
other. One such scheme is the notion of composable overlay services.

2.2.2 Composable Services

The success of the Web as a hypermedia2 information system suggests that users often wish to
access several related services simultaneously. Services that are related to one another usually
share one or more underlying data types. For example, a map server, a weather service, and
a service that computes the distance between two points all share the underlying notion of a
geographic location, perhaps specified by a latitude and a longitude. If all three services are
accessed as part of the same task (e.g. planning a road trip), it is likely that that some of the
information access may be unnecessarily duplicated. In the example, an access to the weather
server might wastefully fetch a map that is essentially the same as a map accessed earlier by the
map service. In addition, the distance server might not provide a map at all, but the user may
wish to see the shortest distance between two cities plotted on the map. In order to solve these
two problems, it is desirable that services that share an underlying data type be able to interact

2 hypermedia is used to indicate a hypertext system whose documents contain references to other documents, cf
[14].

2.2. APPLICATION STRUCTURES 19

with, or to be able to control, each other. Services that can cooperate in this manner to manipulate
data of a commonly known type are known as composable services.

The services presented in the example above actually represent a special case of composable
services, wherein each service is able to simply augment the information produced by a previous
one. For example, a weather service may simply be able to overlay information on the output of
the map server. Such groups of services are known as composable overlays. However, services
may wish to interact even if they are not overlays. For example, an encylopedia may wish to
instruct a map browser service, already present on the user's machine, to display a map of the
area to show the location of a historical monument the user just inquired about.

Service composability is thus a desirable characteristic for two reasons. Firstly, it helps to reduce
the amount of communication that is performed, by allowing reuse of data, and of code (e.g.
the procedure needed to draw a line between two points on a displayed map) that is already
cached on the client machine. Secondly, it allows the client to construct composite applications
built using client-side aggregating agents to construct capabilities exceeding those of any of the
components. Such "client-side scripts" are one type of user agent that may be constructed by the
user, or possibly supplied by a third-party service provider.

2.2.3 Controllable Resource Managers

The computationally capable clients of the target environment provide a set of resources available
for use by the owner of that client. Traditionally, such resources are managed by algorithms that
attempt to optimize their use over a wide variety of scenarios. Examples of such resources include
memory and disk space for caching, power, communication bandwidth, display real estate, etc.
However, the managers of these resources are often able to benefit from advice provided by the
services that use them. For example, a cache manager that is aware that only the weather data in a
weather map expires after a few hours, but that the map itself always remains valid, may be able
to use this information to eliminate unnecessary data fetches. Similarly, a meeting-scheduling
service may wish to inform the client that the result of a request will not be available for several
hours, thereby allowing a mobile client to save valuable power by turning off its receiver in the
interim, if it so desires.

To a service or agent, resource managers can simply be viewed as "services" located on the client
machine itself. Resource managers can thus be represented by controllable objects much like
the proxy objects created and managed by real services. These objects serve as a mechanism to

20 CHAPTER 2. BACKGROUND

allow input of control hints (such as an algorithm for computing the time at which a piece of data
expires) by server agents from services that use the resources. Although the management of such
control objects is somewhat different from that of proxy objects (e.g. they cannot be cached at
remote locations, and they cannot be expelled from the client machine's namespace), this scheme
allows for an interface to the user's resources that is consistent with other interfaces to remote
services that an agent might encounter.

2.2.4 Other Techniques

User and server agents, as defined, are capable of arbitrary computation, although their access
to system resources may be limited in the interests of security. They can therefore be used
to construct arbitrary customized communication paradigms. Some such paradigms are listed
below:

• Filtering allows the application of an arbitary encoding or transform to the data being
exchanged by the server and user. For example, a server agent, exported to the user, could
decode data compressed in an arbitrary and perhaps type-specific manner by the server.
A user agent, exported to the server, might eliminate multiple round trips to the server by
allowing a client to to make packaged queries, such that the entire series of queries would
be executed at the server, and only the final result would be returned to the user.

• Precondition verification might be performed by a server agent on input supplied from the
user, to remove invalid requests before they are sent to the server.

• Shared workspaces could be implemented by a service by exporting appropriate server
agents to each of the users of the workspace. The server agents might interact with the
service to ensure that the user's copy of the shared document is kept up to date.

• Fault tolerance in the presence of unreliable communications could be provided at a
service-specific level by use of appropriate server agents. Such agents might encode pre-
determined strategies for error recovery in the face of a dropped connection, such as the
ability to fall back to a backup server "recommended" by the primary.

• Reconnectability and resynchronization of user and server states after a disconnection could
also be handled through the use of agents to negotiate the reconnection. Such disconnec-
tions may arise in contexts other than that of unreliable communication. For example,
agents could be used to implement functionality similar to that of the teleporting system [8]

2.3. RELATED WORK 21

wherein the user may intentionally "disconnect" from his environment and later reestablish
the connection from a different site.

2.3 Related Work

This research investigates the hypothesis that "control relationships" between application com-
ponents constitute an important factor in partitioning an application across one or more low-
bandwidth links. The choice of control as a discriminant is unique to this study. Each related
work described falls into one of three categories: projects that involve a similar artifact, but for
a different purpose; projects that address the problem of application partitioning, but decide on
application structure via a different scheme; or projects that embody a similar, but much more
limited, model of application structure in a communication-constrained environment.

2.3.1 Similar Artifacts

There have been a number of efforts, contemporary to the Oasis research, to produce compu-
tationally enabled Web browsers, and these comprise the most significant portion of the related
work. The most successful such browsers are HotJava [49], Netscape Navigator[32], and Mi-
crosoft's Internet Explorer[31]. As Netscape Navigator and Internet Explorer simply integrate
technology developed for HotJava, they are not described further. Other, lesser known, early
efforts at computationally capable Web browsers include those of the dynamic documents group
at MIT [23], and the Mobisaic project at the University of Washington [54].

The Hot Java project aims to provide interactive content via the Web. Dynamic documents allow
retrieval that adapts to the available resources of a mobile client, whereas Mobisaic provides
documents that react to contextual information, such as the location of the client. None of these
systems treat the client host, or its resources, as being shared among applications. No resources,
other than the Web browser itself, are available for control by external service providers. As they
target different application classes, all three systems differ in one important way from Oasis -
support for computationally active documents is provided in the Web browser itself, rather than
in a separate entity, such as the Oasis proxy. The Oasis architecture better supports the role of
the client machine as the point of convergence between multiple clients, network services, and
resources, as is required if control interactions between these entities are to be feasible.

22 CHAPTER 2. BACKGROUND

The three systems mentioned above thus provide an enabling technology for limited server
agents, wherein limitations arise from differences in the envisioned functions of the agents. How-
ever, none of them offer any support for user agents. All three systems embrace the notion of
a monolithic computationally-enabled Web browser. As browsers, by definition, are usually not
executing on the part of the network where user agents would ideally be hosted, this approach is
incompatible with the Oasis goal of providing a single, homogeneous environment to accomodate
both user and server agents.

Another architecture that is similar to Oasis at an ideological level is the system once advocated
by General Magic, whose visions are described in [59] and [58]. General Magic proposed an
agent-based world where each item of data was to be managed by a computationally active en-
tity. These entities were written in a language called Telescript, and moved from host to host to
negotiate with other entities. Although General Magic's system might eventually have provided
all the capabilities necessary to support both agent models, the system was abandoned as it be-
came commercially irrelevant - General Magic's universe for agents was completely unrelated
to the World Wide Web, and thus the system was unable to exploit its largest source of potential
applications. It is unclear how much of the original system was implemented and evaluated. Fur-
thermore, General Magic did not investigate the importance of control interactions in application
partitioning, as advocated by this thesis. General Magic recently released a new agent environ-
ment called Odyssey [16] featuring better integration with the Web. However, Odyssey is more
limited than its predecessor, is still less tightly integrated with service deployment over the Web
than Oasis, and fails to consider the issues of control interactions or communication-constrained
environments. The IBM Aglets Workbench [27], another platform similar to Odyssey, differs
from Oasis in essentially the same respects.

The AT&T GeoPlex [5] system is one that is contemporary with and structurally similar to Oasis.
Under GeoPlex, clients and servers are separated by a network of proxies. The network of prox-
ies mediates all communication, and a secure "core" of proxies and services imposes network
security, monitoring, load management, and enhanced network services. It is noteworthy that
the GeoPlex environment was intended neither for application partitioning nor to facilitate the
adaptation of online services to communication-constrained environments. However, the archi-
tectural similarity between GeoPlex and Oasis suggests that the infrastructure required for these
systems has benefits other than the ones investigated by this research.' Consequently, the'inde-
pendent evolution of GeoPlex increases the likelihood that the internet will one day host the kind
of network infrastructure necessary for universal acceptance and deployment of the capabilities
of both systems.

The use of protocol proxies to filter traffic destined for low-bandwidth or resource-poor environ-

2.3. RELATED WORK 23

merits has been examined by a number of efforts. Many, such as OreO [9], WebExpress [19]
and GloMop [15] have targetted or examined World Wide Web access. "OreOs" built from the
OreO toolkit are filtering HTTP proxies that act as "HTTP stream transducers," and may modify
accessed data in ways appropriate to the needs of the requesting client. WebExpress consists of
a pair of HTTP proxy servers designed to proxy Web access from wireless clients. Its filtering
operations and specialized network protocol between proxies attempt to reduce the bandwidth re-
quired for page retrieval. GloMop proxies "distill" various data types to approximations requiring
lower bandwidth to retrieve. A more general approach is taken by [60] in a framework to allow
filtering of any IP-based protocol. All of these approaches are conceptually equivalent to the use
of filter agents in Oasis. Although Oasis applications make extensive use of filter agent capa-
bilities as an implementation convenience, Oasis filters are just one of a set of control-oriented
building blocks available to Oasis applications. In addition to hosting filters, Oasis proxies act
as points of application composition, as points of application interaction with resources available
within the network, and as hosts of application code and data. The aforementioned filtering ap-
proaches either do not allow or do not encourage (and therefore do not facilitate) the diverse use
of proxies in the manner intended by the Oasis infrastructure.

Lastly, the ANTS framework from the Active Networks group at MIT [57] takes the approach
that network routers should be computationally capable, to enable rapid deployment and test-
ing of new network protocols. Although this is theoretically comparable to the introduction
of computationally capable proxies into the network, the implementation details of the system
differentiate the environment considerably from that of Oasis. ANTS is targeted at network
protocols, and exported code is thus constrained to operating at a very low level, with severe
performance and resource constraints. Application developers are consequently burdened with
much additional complexity and a comparative lack of resources. Network routers are usually
critical, heavily-loaded environments that cannot afford to allocate many resources to the needs
of an individual application. Thus, while this system can support limited server agent capability,
it is not well suited to the requirements of application partitioning on a long-term (i.e. more than
a few seconds) basis.

2.3.2 Other Approaches to Application Partitioning

A small number of projects are examining the issue of partitioning an application across a wire-
less network. These projects focus on, and attempt to modify, the data access characteristics of
applications through techniques such as prefetching [28], selective data transmission [55, 23], or
prioritization [55, 4]. Thus, these projects focus on a problem similar to that addressed by Oasis,

24 CHAPTER 2. BACKGROUND

but for a distinct class of applications. This research is complementary to these approaches, and
addresses those applications, or components of applications, that can be optimized by avoiding
or reducing data movement through control-oriented partitioning. Techniques such as prefetch-
ing and prioritization could still be applied to those applications or components that are fun-
damentally pure communication (class II) components (See Section 2.1.3.), and thus cannot be
partitioned along control-oriented lines. It is interesting to note that these earlier application
partitioning models, which concentrate on data movement in the context of mobile computing,
have often partially incorporated proxies (e.g., [56, 6]) as a means of addressing problems that
are strictly issues of control rather than of data movement. For example, proxies in [56] and [6]
both serve to address situations wherein a repository of application state is best held on the server
network and manipulated remotely by the client.

The principle of application partitioning according to control considerations has itself arisen in
limited contexts in prior work. The most general such instance is Oracle's "Oracle in Motion"
product [38,20] which supports access to databases from mobile hosts under Microsoft Windows,
through their "client-agent-server" model. The model provides support for basic user agents,
and points out that user agents can often lead to reduced communication overhead and better
application latency. This is because a user agent can sometimes substitute a single roundtrip over
a wireless network where multiple ones would have been required by a client-server model in
performing the same transaction.

A similar approach, in the context of application deployment in a mobile computing environment,
is that of Hokimoto et al [18], who propose the control of applications partitioned via the use of
"object graphs." An object graph is an abstraction describing an arrangement of data filters that
can be controlled from a mobile computer via a "control object." Feedback from the part of the
application on the mobile computer is used to configure interactions with the server-side part of
the application to be appropriate for the resources available to the mobile device. In effect, this
architecture advocates the partitioning of the application into relocatable filter blocks which are
manipulated by a user agent and may be composable. Server agents and local resource interaction
are not addressed.

2.3.3 Similar Models of Application Structure

The Rover Toolkit for mobile applications [22] provides some abstractions that are similar to
those available to Oasis applications. In particular, Rover requires applications to encapsulate
important data in "relocatable dynamic objects" (RDOs) which can be moved between a client

2.3. RELATED WORK 25

and a server upon request by the application. All updates to data contained in RDOs are han-
dled through Rover's queued RPC system (QRPC) which provides operation logging, rollback,
and replay and supports a particular concurrency control mechanism. The RDOs may contain
methods by which the encapsulated data is manipulated at the client or server - in effect, data is
often relocated along with a control interface to that data. The Rover Toolkit can be thought of a
more elaborate counterpart to the combination of Oasis proxy objects and the controllable cache
manager described in Section 4.4.1. The Rover Toolkit is not integrated with the HTTP protocol,
and facilitates coherent data access and update handling that is not supplied by Oasis. Rover's
functionality is centered around a paradigm similar only to that of Oasis proxy objects, as Rover
does not address the other control-oriented techniques that Oasis supports.

Partitioning along control-oriented lines is also sometimes found in carefully designed applica-
tions that deal with large data sets and regard current wired networks as a bottleneck, or as a
resource to which access should be optimized to ensure scalability. An example of such a sys-
tem is the Weather Anchordesk [7]. The partitioning that has been chosen by the designers of
the Anchordesk is well suited to wired networks and to the server technology underlying the
environments in which the Anchordesk has been deployed. In the Anchordesk system, an "inte-
grator" situated close to the sources of weather data merges the various data sets into a weather
map, forwarding the composite result to client browsers. Each weather browser acts as a means
to control actions occuring at the integrator. The Anchordesk partitioning reduces aggregate net-
work load by transmitting only composite data to clients. On the other hand, this partitioning
prevents client browsers from caching any components of the data received beyond the validity
of the shortest-lived component of the composite result. This limitation is acceptable due to the
high speed at which an updated composite weather map can be retrieved over the wired network.
As described earlier, a different partitioning might have been better suited to this application in
a mobile or other communication-constrained scenario. Oasis represents a framework that sup-
ports either type of partitioning. In Section 4.5 a reconfigurable Oasis weather browser, similar
in structure to the Weather Anchordesk, is used to demonstrate the benefits of repartitioning for
communication-constrained scenarios.

2.3.4 Object-oriented Technology and Control

Lastly, it should be mentioned that "control-orientedness" is related to the notion of "object-
orientedness," about which there is a huge volume of literature. The latter suggests the encap-
sulation of data entities such that they can only be accessed by the appropriate methods on that
data. The former is a higher-level notion dealing with the division of functionality among the

26 CHAPTER 2. BACKGROUND

components (and therefore among the objects) of one or more applications. This partitioning is
based upon interactions between the various entities. Object-orientedness provides a low level
partitioning of data manipulation along object lines. Control considerations, when applied to
an object-oriented design, will thus usually suggest a partitioning of the objects. Therefore, the
two schemes are compatible with each other. It is hardly surprising that the Oasis architecture
incorporates a small object system, based largely upon the object system of the Java language
used to implement Oasis, whose objects provide a means to interact with the agent code they
encapsulate. A commercial implementation could even have used a system conforming to the
well-known Common Object Request Broker Architecture (CORBA) [35, 47], although such an
implementation is beyond the scope of this thesis.

Chapter 3

Architecture of Oasis

This chapter describes the architecture of the Oasis system, and its support of the agent models.
Section 3.1 presents a short overview of the system, and subsequent sections present design and
implementation details. Section 3.2 details the basic agent support provided by Oasis. Section 3.3
describes agent composition. The use of local resource managers is covered in Section 3.4.
Section 3.5 describes the integration of the Oasis environment with the World Wide Web, and
documents the use of filters, which prove particularly useful in the context of the Web. Lastly,
Section 3.6 illustrates the construction of agents through the example implementation of a simple
but useful agent.

3.1 Introduction

Oasis was designed to provide a completely homogeneous networked framework to support the
partitioning of Web-based applications into user and server agents spanning multiple machines.
This goal has been achieved through the construction of a single ubiquitous HTTP proxy server
enhanced to accomodate agent functionality. The server is interposed between the client's Web
browser and the service provider, at the client's host, on the server network, and possibly at points
in between, as shown in Figure 3.1.

The Oasis proxy server, in addition to acting as a normal HTTP proxy, must also support agent
recognition and execution, composition of agents, agents dedicated to managing physical re-
sources, and services to support agent integration with the World Wide Web service paradigm.

27

28 CHAPTER 3. ARCHITECTURE OF OASIS

Path taken between client and service provider, through intermediate routers or hosts, and possibly across
different networks.

B
r l°\
0 / a \
w "i s 1 s \ i / e \s/ r

Client host Intermediary Intermediary

(optional)

s

/ ° \ e
/ a \ r

1 s 1 V

\ ' / c \s/ e

Service Provider

Figure 3.1: Oasis proxies may be located at the client's host, the service provider's host, and/or at various
points on the path between the two.

The core proxy server consists of a minimal set of facilities necessary to host agent functionality
and provide integration with Web applications. The rest of the server's functionality is imple-
mented by trusted agent modules, as shown in Figure 3.2. The figure shows an Oasis proxy
with caching and advertisement elimination provided by executing Oasis filter agents. As shown,
the proxy examines data received from external data sources, and intercepts agent code when
appropriate, creating Oasis agents. Some such agents are filter agents, like the caching and ad-
vertisement filter agents illustrated. Filter agents, once initialized, may examine data requests
received from a data consumer and may satisfy or modify these requests themselves rather than
allow the proxy to forward them to the appropriate data producers. Although not illustrated in the
figure, filter agents may also modify or consume responses received from data producers prior to
the forwarding of those responses to the requesting data consumers.

3.2. BASIC AGENT MECHANISMS 29

name service

cache hit /cache managen
(filter) J

object
store

local
disk

■8!

■5'
s:

(ads discarded)

1
C advertisement

filter

—r—
ürt

dispatcher

JL

((new agent) J

3'
S-'
o 's

:8

agent
recognizer

-►{ data producer
(server or chained

proxy server)

Figure 3.2: The structure of an Oasis proxy, shown with two agents loaded - a trusted cache manager,
and an untrusted advertisement filter. The grey components are those of the basic proxy. (Other functional
components are dynamically loaded as needed at runtime.) The solid black arrows represent data paths,
whereas the dotted arrows represent additional optional data paths. The grey arrows represent interactions
between subsystems.

3.2 Basic Agent Mechanisms

Oasis agents consist of compiled Java [50] bytecodes exported by a service, a client, or possibly
even another agent. The movement of agents is integrated with the standard World Wide Web
paradigms for downloading data from server (i.e. fetching a URL) and uploading data to a server
(i.e. posting form data). Oasis proxies on the data path between client and server examine the
data passing through, and, when appropriate, intercept agent code and allow it to execute.

Oasis supports two basic agent types - "User agents" and "Server agents" - which correspond

30 CHAPTER 3. ARCHITECTURE OF OASIS

directly to the user and server agent models discussed earlier. User agents usually perform work
under control of a client, and wish to execute as close to the service provider as possible. Server
agents, on the other hand, usually act under control of a service provider, and execute as close
to the client as possible. Both types of agent are tagged, at their source, with an appropriate
Content-Type header. Every Oasis proxy examines the headers of objects passing through it
in order to recognise agent code and decide whether or not hosting it is appropriate.

Whether or not an agent is hosted by a proxy is determined by the type of the agent and the
position of the proxy in the chain of proxies between the client and service. By appropriately
augmenting requests and responses passed through, proxies communicate their existence to other
proxies in the chain. Each proxy is thus able to determine whether or not it is at either end of this
chain. Proxies at the ends of the chain host user and server agents; the agent loading paradigm
allows for proxies elsewhere to host other agent types (such as global agents, described as an
example in Section 3.2.4) built from the primitive agent types.

3.2.1 Agent Recognition and Loading

By default, an HTTP proxy server accepts requests from clients, requests data from remote
servers on behalf of those clients, and then returns the data received to the requestors. Simi-
larly, it also allows clients to make requests for data to be uploaded to servers, and passes that
data on to its destination. The Oasis proxy, in the course of performing these actions, also takes
the following additional action in order to support hosted agents:

1. Headers of an incoming request are checked to see whether Accept: app/ Java Agent is
specified. If this header is present, the Oasis proxy knows that the requestor is also capable
of hosting agent code. Thus, the proxy itself is not the agent host closest to the client.

2. If the request is for data download (i.e. HTTP "GET") the Oasis proxy adds Ac-
cept: app / Java Agent to the request headers, and passes the request through to the next
server in the chain. Once the response is received, its Content-Type header is checked
to see if the response is tagged app/ JavaUserAgent. If so, the agent code (i.e. the body
of the response) is intercepted by the Oasis proxy and becomes a live agent, executing as
close to the service provider as possible. (If closer execution had been possible, the re-
sponse would have been intercepted prior to arrival at the proxy.) If the requestor of the
data has not specified (in the request) that it is capable of hosting agents, the Oasis proxy
must also similarly recognise server agents (app/JavaServerAgent) and intercept them,

3.2. BASIC AGENT MECHANISMS 31

as it happens to be the agent-capable site closest to the client.

3. If the request is for data upload (i.e. HTTP "POST") the Oasis proxy checks the Content-
Type header to determine whether or not the uploaded data is tagged as being either type
of agent. Any such agents are intercepted and executed.

4. All intercepted agents are supplied with a handle to the unsatisfied data request pending due
to their having been intercepted. The newly constructed agent is responsible for generating
the response to the request that caused it to be loaded. Often the response is simply a text
message to confirm that the agent was started successfully. This response propagates back
through the chain of proxies to the original requestor.

Note that this scheme is not completely symmetric due to the need to remain compatible with
standard HTTP. In particular, no automatic mechanism exists by which a user agent being up-
loaded can reach the agent host closest to the service provider's site. Rather, a user agent is
executed by the next available agent-capable host in the chain of hosts between uploader and
service provider. This limitation is not restrictive and can be overcome in a multitude of ways
by any agents needing to do so. For example, an agent might simply choose to propagate it-
self hop by hop until it found the last agent-capable host in the chain. Alternatively, the agent,
having been started on the first proxy in the chain, could request a fetch of itself via the regu-
lar HTTP mechanisms, causing a regular HTTP download request to propagate up the chain of
proxies — the download request itself would be satisfied and intercepted by the last proxy in the
chain, as desired. Most of the Oasis evaluation applications implemented use the latter technique
in situations where an agent wishes to execute as close to a service provider as possible.

Every agent handled by an Oasis proxy must be a subclass of the oasis . agent .Agent class,
which serves to provide a standardized means of agent initialization, as well as to serve as a
repository for a few convenience routines needed by all agents.

3.2.2 Minimal Agent API

The oasis . agent .Agent superclass is the superclass of all agents. As such, it enforces that
all agents will have a number of methods in their definition, and provides default definitions of
some methods that are useful to an agent, or to other agents that wish to interact with it.

The following methods can be implemented in the body of an agent:

32 CHAPTER 3. ARCHITECTURE OF OASIS

• main - The body of the agent. This is the entry point for the agent after initialization
completes.

• getAgentlnfo - This method is called by anyone who has a handle to the agent and
needs to find out more information about it. The information is usually returned as an
identification string.

The following methods are provided for convenience and agent administration:

• setNames ervi c e - This method is used to give the new agent a handle to a name service,
through which it may locate other agents, register itself, etc. Prior to invocation of main,
this method is called with a handle to the very simple name service provided by the Oasis
proxy server. (Nameservers are described later, and agents may choose to provide a more
complicated name service themselves.)

• sendHttpTextHeader - After loading, many agents return a text document to the orig-
inal requestor, usually to indicate successful loading or to provide other information of
interest. This immutable convenience routine sends an HTTP response header to the re-
questor indicating that a text document follows. After calling this, an agent can simply
output the text strings that constitute the body of the response.

• getURLSource - This method returns the URL from which the agent code was down-
loaded, if it is known. This may be useful to the agent itself, as well as to any services wish-
ing to implement access control lists based on agent origin. This information is recorded
securely by the Oasis proxy prior to the invocation of main and cannot be altered once set.

• createTopLevelwindow - This method is provided to allow agents a mechanism by
which they can display graphical output. Windows created via this mechanism are de-
stroyed, along with the threads of the agent, when the agent's main thread exits or is
destroyed. The automatic destruction of created windows is done via a companion call,
deletewindows, that is called by the Oasis proxy.

• dispatchNewURL - This method allows an agent to obtain a URLConnection object for
access to URL data via the proxy. It is purely a convenience method, as other means of
accessing URL data via the proxy are also provided.

Other agent APIs, such as the FilterAgent API, described later, are subclasses of oa-
sis .agent.Agent.

3.2. BASIC AGENT MECHANISMS 33

3.2.3 Inter-Agent Interaction and Security

The Oasis proxy provides a mechanism for agent interaction, but does not set any policies to
govern it. It is expected that policies, where required, will be set by developers whose agents
must interact with each other. Oasis agent interaction is based upon the existence of a name
service coupled with Java method invocation. The Oasis proxy provides a simple name service
with which agents may choose to register under a well-known name. Other agents may then
contact the registered agent by resolving that agent's name and using the returned handle to
invoke methods on public interfaces ofthat agent. The functions provided by the name service are
minimal - for example, the service does not enforce or exploit hierarchical namespace structure.
This is because, in practice, it is expected that the name service will be used for bootstrapping
purposes only - more sophisticated name services can easily be implemented by an agent; the
native name service need only serve to provide a means for locating a more comprehensive name
service, and for registering basic host resources made available by the base proxy itself. For
example, the Oasis cache manager, which is implemented as an agent (and can act as either user
or server agent as needed), utilizes the simple name service to locate the proxy host's public
object store, which it uses to cache objects fetched.

Name services and agent interaction in general necessitate the introduction of an access-control
system in Oasis, as it is often not desirable that all agents have equal access to all the services and
agents registered. The Oasis proxy resolves this problem by tagging all agent code with the URL
from which it was downloaded. The source of the agent code can be used to determine the level
of trust accorded that agent. In theory, this permits an access-control list security infrastructure;
in practice, however, only two levels of access are currently enforced - the untrusted access level,
for agents downloaded from the network, and the trusted access level, for agents loaded from the
local disk. The latter level is necessary for agents that need greater access to Oasis resources, e.g.
an agent to manage the local disk cache. In the current Oasis implementation, all agent interaction
performed via method invocation is constrained to occuring only through trusted interfaces, i.e.
each Oasis proxy must choose to accept as trusted any interfaces via which two agents may
communicate. This restriction eliminates arbitrary agent communication by default. However,
any proxy that wishes to allow less restrictive inter-agent communication need only accept the
security of an interface defining methods for arbitrary message passing or some variant thereof.

A name service should also implement a garbage collection policy for the name space it main-
tains. If an agent does not register with any name service, that agent will run to completion,
and will thereafter be marked for garbage collection by the Java runtime because no references
to the agent's code remain. However, name spaces retain a reference to agents registered with

34 CHAPTER 3. ARCHITECTURE OF OASIS

them, and thus provide a means for agent code to remain dormant, in the absence of a running
agent thread, until invoked by another agent or by the proxy itself. Ordinarily, well-written agents
should unregister from the name service when they are no longer needed. Occasionally, however,
it may be necessary to remove code from agents that terminated without unregistering properly.
A policy, such as selection according to the time elapsed since the last resolution of an agent's
name, is necessary for automatic detection and elimination of such agents. Alternatively, agents
known to have terminated improperly can be removed specifically if their registered names are
unregistered by a proxy administrator, or by an another agent with appropriate authority. If a
name service does not implement a garbage collection policy, the proxy administrator can force
garbage collection of all agents registered with that name service by unregistering the entire name
service from the native name space implemented by the Oasis proxy. Unregistering a name ser-
vice disconnects all of its clients from the tree of reachable objects, thereby marking them all for
garbage collection unless they are referenced elsewhere.

3.2.4 Arbitrary Agent Placement

The Oasis agent recognition paradigm has been optimized for the two most common agent types,
namely user and server agents. However, the tag-based agent recognition mechanism does not
restrict agent implementations to only those two models. Other agent positions can be obtained
when explicitly desired by the implementor. In general, this is accomplished by constructing the
agent to be aware of its own progress through the network, and to take charge in determining
where it is to execute. As an example, consider the implementation of global agents, which
execute on every agent-capable host between the service provider and the client, e.g. in a multi-
level caching scheme. Such an agent can be implemented by an agent injected into the network
by a service provider yet tagged as being a user agent. Any agent-capable host on the path
between service and client would attempt to intercept and host such an agent. Every time such
an interception occurs, the agent need only initialize itself, and then fulfill the pending I/O fetch
request by returning its own code (rather than the usual textual notice of successful completion),
allowing subsequent interceptions by links further down the chain.

3.3 Agent Composability

Software agents can be composed in two basic ways, both of which are permitted by Oasis.
Firstly, an agent may encapsulate, or overlay, another agent. The encapsulated agent continues

3.4. MANAGEMENT OF A HOSTS PHYSICAL RESOURCES 35

to function and to provide its original services, but the data input to the encapsulated agent may
be preprocessed by the encapsulator, and the data output by the encapsulated agent may be post-
processed by the encapsulator. The encapsulated agent may, if desired, simultaneously continue
to be available in its original form, without the added effects of the encapsulator. Alternatively,
agent composability can be achieved by requiring agents to explicitly advertise their input and
output types. When composite functionality is required, a new agent is constructed to stream data
into and between the appropriate component agents.

Although both types of agent composition require type-compatibility checking at interfaces be-
tween components, the development of data-type characterization and enforcement for the Web
is beyond the scope of Oasis and is being addressed by efforts such as [37]. Type compatibility
for agent encapsulations is enforced in practice by the Java class hierarchy - encapsulating agents
usually must either be a subclass of the encapsulated class or share an ancestor with that class,
thereby ensuring type compatibility between layers. If this relationship does not hold, encapsu-
lation can still occur, but the result is likely to be of limited usefulness as the encapsulation is
not transparent to entities expecting the interface presented by the formerly unencapsulated agent.
Type compatibility for the second agent composition scheme is not enforced by any aspect of Oa-
sis; the agent composing the components is responsible for checking compatibility when setting
up the data stream.

Many agent encapsulations occur with the cooperation of a name service. One of the simplest
ways for an encapsulation to occur is for an encapsulating agent to register itself under a name
formerly held by the encapsulated agent. As the Oasis proxy is a proxy for World Wide Web
information access, the proxy provides specialized support, and a specialized namespace for
an important class of composable agents tailored to encapsulating WWW data access requests.
These agents, called filter agents, are described in Section 3.5.1. Filter agents are a class of agents
that control a resource that is local to the machine hosting the Oasis proxy. In the case of filter
agents, the local resource happens to be the proxy itself; however, the Oasis proxy also allows for
other agents that wish to provide a controllable interface to a local resource.

3.4 Management of a Host's Physical Resources

The management of local physical resources fits naturally into the Oasis paradigm of modular
agents providing incremental functionality to the system. Java code can very easily be written
to encapsulate access to a physical resource, and integrated with the Oasis proxy by embodying
that code as a local agent, i.e. a trusted agent loaded from the local filesystem. Only two se-

36 CHAPTER 3. ARCHITECTURE OF OASIS

curity levels are available at present, and all local resources are protected from direct access by
downloaded agents. A local agent written to manage a resource need only register itself with the
nameservice (either the Oasis nameservice or a more comprehensive one, if available) and make
available the appropriate control interface. An example of a controllable physical resource man-
aged by a local agent is the Oasis cache manager, which is able to consult server agents from the
appropriate servers when making cache management decisions relating to downloaded objects.

3.5 Agent Integration with the World Wide Web

The Oasis proxy is an HTTP proxy. As such, it is a service that can benefit from exposing control
interfaces that permit behavior customization by agents. It is also a conduit for data that consti-
tutes the communication component of Web-based services; in order to optimize communication
or customize content, agents often require access to this data. In order to satisfy both of these
needs, the Oasis proxy supports a class of agents known as filter agents, which operate according
to the oasis .agent .FilterAgent API.

3.5.1 Filter Agents

Filter agents are agents that encapsulate accesses to World Wide Web data and services via the
Oasis proxy (i.e. they can be regarded as "filters" acting in between the consumer and producer of
the data). A plethora of useful services has been implemented by filter agents, including services
such as transparent access anonymization[2], data adaptation based on available bandwidth, data
redirection, intelligent data caching, etc. Oasis supports this important class of agents by expos-
ing a limited control interface that can be used to encapulate the processing that is performed to
service a request, as well as by providing a limited namespace to allow for agent encapsulation
of less than the complete URL space (a performance optimization).

Filter agents are loaded and initialized in the same manner as any other agent. They are rec-
ognized by the proxy, activated, and typically return a text document notifying the original re-
questor of successful loading. Once activated, a filter agent registers itself with the Oasis proxy's
dispatcher, which manages accesses to URLs. At this time, the filter agent may also choose that
its registration be assigned the default priority used by most agents, or a higher priority used
by caching filters, which require access to requests before other filters that may forward a data
fetch request to an external data source. Upon demand by the dispatcher, the filter agent must be

3.5. AGENT INTEGRATION WITH THE WORLD WIDE WEB 37

prepared to return an agent which is a subclass of FilterAgentuc (the superclass of all filter
agent URL connections) to be used in encapsulating a URL data connection.

Whenever a request to fetch data from, or post data to, a URL is received, the dispatcher deter-
mines the set of agents that have registered interest in encapsulating that URL. The dispatcher
then creates a simple URL connection (an interface to all potential interactions with the URL
or its data), and allows it to be encapsulated by all appropriate filter agents in increasing order
of their registration priority. Thus the filter with the outermost encapsulation, and therefore first
access to data requests and last access to returned responses, is the filter of the highest priority
from amongst those that registered interest for a particular URL. Once all appropriate encapsu-
lations have been performed, the resultant URL connection is used for all interaction with the
URL by the proxy. Because each encapsulation allows filter agent control of all operations that
can be performed on a URL (e.g. opening a connection to the URL's host server, reading the data
for the URL, or posting data to the URL) it enables a rich set of completely composable agent
functionality.

Figure 3.3 depicts the use of two composable filters (a caching filter and a compress-
ing/uncompressing filter pair) to implement a caching proxy server that supports compressed
data transfers. In this example, every URL requested by a client is examined by the dispatcher.
The dispatcher may determine that the request is to a part of the URL space not managed by the
caching or compression/uncompression filters, and if so, will exclude one or both of those filters
encapsulating the URL. Most URLs are encapsulated first by the compression/uncompression fil-
ter, and then by the caching filter, i.e., all operations on those URLs are passed first to the caching
filter, and may then be passed on to the compression/uncompression filter, before eventually be-
ing passed onto the basic URL fetcher implemented in the Oasis proxy. Thus, a request to read
the contents of the URL is handed first to the caching filter, which may return the contents from
its cache, if present. If not, the request is passed through to the compression/uncompression layer,
which simply forwards the request. The request is eventually handled by the Oasis internal URL
fetcher. The URL fetcher of the first proxy in the chain simply forwards the request to the second
proxy, where the encapsulation and forwarding process repeats. Eventually, the request reaches
the URL fetcher in the second proxy, which contacts the server providing the data for that URL.
As the data flows back to the requestor from an internal URL fetcher, it first passes back through
the compression/uncompression layer. On the proxy that is closer to the data source, this layer
observes the arrival of raw data and compresses it, marking it as compressed, before passing the
data onward. On the proxy closer to the user, compressed data received is uncompressed before
being passed onward. Back at the first proxy, data returned from the uncompressing filter flows
back through the caching filter. The caching filter passes this data back to the requestor, while

38 CHAPTER 3. ARCHITECTURE OF OASIS

Oasis

cache

unea hable URLs

umiltered requests

URL data source
i J

Figure 3.3: The path of a request through a pair of Oasis proxies running filters that implement a caching
Web service with compressed data transfers. The path of the returned data (not shown) is just the reverse
of the path followed by the request.

simultaneously recording the data in its cache, if appropriate.

Filter Agent APIs

Filter agents, as described earlier, are composed of two parts — an administrator and an imple-
mentation. The administrator is an agent that is loaded to activate the filter. It serves to register
interest in the appropriate parts of the URL space, and to provide a method which, upon request,
will take a URL Connection object from the Oasis proxy and encapsulate it with an implementa-
tion agent, which is the implementation of the filter itself. Each filter only requires one instance
of the administrator, which remains active until it chooses to deactivate itself, whereas a unique
instance of the implementation is created for every URL of interest, and remains active only
while that URL is being accessed, as determined by the continued presence of a source and sink

3.6. AN EXAMPLE AGENT 39

for the data retrieved. An administrator agent also usually provides a mechanism by which the
filter agent as a whole can be deactivated. It may also provide other administrative functions,
such as detecting and avoiding the existence of multiple instances of the same agent in a given
proxy.

Administrator agents must be a subclass of oasis . agent. FilterAgent. This class provides
predefined methods for interaction with the dispatcher, and a predefined method which can be
used, by an administrator or by any authorized agent, to deactivate the filter; it also enforces
the requirement that administrators provide a method to be used in encapsulation a URL data
connection upon request. Since the administrator API is fairly simple, it is not presented in detail
here.

Filter implementations must be a subclass of oasis, agent .FilterAgentUC (i.e. "Fil-
ter Agent URL Connection"). This class mirrors the interface of Java's own
java.net.URLConnection and serves to provide default implementations of all the meth-
ods required for a null encapsulation of a URL data connection, as well as a few convenience
functions (such as access to the name of the URL associated with the filtered connection). Filter
implementations are constructed by overriding the default implementations as necessary. Over-
rideable default methods are provided to allow reading or modification of every HTTP header
field as well as of the data being transferred.

Although filter agents normally deactivate themselves when they are no longer necessary, it may
occasionally be necessary to forcibly remove a filter agent, e.g. if that agent did not terminate
properly. In order to have such a filter agent marked for garbage collection, not only must the
agent's registered names be freed as described in Section 3.2.3, but the filter agent must also be
unregistered from the Oasis proxy dispatcher. As in the case in which an agent's registered names
must be forcible unregistered, a proxy administrator, or his agent with appropriate permissions,
can unregister an agent from the dispatcher when necessary.

3.6 An Example Agent

This section presents an example of a user agent filter that recognizes ftp URLs in documents,
and intercepts any attempt to transfer the data they reference. This functionality is useful to users
searching for information using a weakly connected browser that is not on their usual desktop.
For example, a user might be logged in from home over a slow modem link, searching for refer-
ences to be examined the following day in the office. Typically, he would not wish to retrieve the

40 CHAPTER 3. ARCHITECTURE OF OASIS

large amount of data over the slow link to his home, but would rather instruct an agent, executing
on a machine in his office with a fast link to the network, to intercept and save such data on his
behalf.

Like all filters, this filter is implemented as a pair of agents. The administrator part of this agent
is implemented by class FtpRedirect and the implementation part of the agent is implemented
by class FtpRedirectuc. The skeletons of their implementations are presented below.

3.6.1 Class FtpRedirect

FtpRedirect, when loaded, registers with the dispatcher indicating an interest in all URL data
fetches occurring via the Oasis proxy. This interest is registered at the priority accorded all
filter agents by default. It then examines data fetch requests as they occur, and interprets a fetch
of "http: //unload-redirect/'" to mean that the ftp redirection filter is to terminate. It
also interprets fetches of URLs beginning with the redirection prefix "ftp: / /redirected." as
URLs whose data is to be fetched and stored into a local file. Intercepted URL data is stored
in the /tmp directory of the machine hosting the filter, in a file whose name is the same as the
final component of the name of the URL. After an interception occurs, the oasis utility class
AgentMessageUC is used to construct a "fake" URL data connection to satisfy the original
request - the connection simply produces a message indicating that the data of the URL has been
intercepted and saved. Finally, all other URLs (i.e. non-special URLs) are encapulated with the
filter implementation class, FtpRedirectuc and allowed to proceed as usual.

The code for FtpRedirect is as follows:

import j ava.io.*;

import java.net.URLConnection;

import java.net.URL;

import oasis.agent.*;

public class FtpRedirect extends FilterAgent {

public FtpRedirect() {};

public final String redirect_pref ix = "f tp: //redirected..." ;

public void main (OutputStream os) {

//After loading, just register with the dispatcher and

3.6. AN EXAMPLE AGENT 41

//print a message to Inform the loader of successful initialization.

PrintStream p = (PrintStream) os;

registerWithDispatcher("*");

try {
sendHttpTextHeader(p);

p.printIn("Ftp redirect filter loaded");

p.flush();

} catch (Error e) {

e.printStackTrace();

}

}

public void copyToTarget(URLConnection uc. String target)

throws IOException

//Read data from URL connection and copy to target file
{

}

public URLConnection openConnection (URLConnection uc)

{

// This code is called once for every request processed by the
//proxy, after the agents registers interest with the
//dispatcher.

FtpUC ftp_uc = null;

String url, new_url;

URL new_URL = null;

URLConnection new_uc = null;

String ftp_targetdir = "/tmp";

String unreg_msg = "FTP URL Redirect mgr now unregistered.\r\n\r\n";

// Check for a special URL that indicates termination

url = uc.getURL().toExternalForm();

if (url.equals("http://unload_redirect/")) {

unregister();

return new AgentMessageUC(unreg_msg);

}

42 CHAPTER 3. ARCHITECTURE OF OASIS

//If the URL doesn't need to be redirected, wrap it with an

// FtpRedirectUC (the agent implementation) and proceed

if (!url.startsWith(redirect_prefix)) {

try {

new_uc = new FtpRedirectUC(uc);

} catch (java.net.MaiformedURLException e) {

System.err.printIn ("Exception creating new_uc.");

}

return new_uc;

}

//URL is a redirected URL

// Construct the original URL by removing the redirection prefix

new_url = "ftp://" + url.substring(redirect_prefix.length()

url.length());

System.err.println ("redirected URL is " + new_url);

//Open a data connection for the original URL

try {

new_URL = new URL (new_url);

new__uc = dispatchNewURL(new_URL);

} catch (Exception e) {

}

//If we got an html file back, it's probably the description
//of a directory - don't intercept it.

String ct = new_uc.getHeaderField("Content-Type");

if (ct != null && ct.equals("text/html"))

return new_uc;

//File is to be intercepted. Figure out where to store the
// intercepted data.

String URL_file = new_URL.getFile();

3.6. AN EX AMPLE AGENT 43

String ftp_target_file;

int i ;

if ((i = URL_file.lastIndexOf('/')) < 0) {

ftp_target_file = ftp_targetdir + URL_file;

} else {

ftp_target_file = ftp_targetdir +

URL_file.substring(i, URL_file.length()

}

//Finally, fetch the data and save it to the file in question
try {

copyToTarget(new_uc, ftp_target_file);

} catch (IOException e) {

e.printStackTrace(System.err);

}

// Satisfy the pending data request by returning a "fake"
// URL connection that will notify the original requestor that
//the data has been intercepted.

return new AgentMessageUC ("URL " + new_url +

" saved to " + ftp_target_file + n.\n");

}

}

3.6.2 Class FtpRedirectUC

The implementation part of the filter examines html files being fetched, modifying their data so
that all ftp: / / URLs are prefixed with ftp: / /redirected-, allowing the administrator part
of the filter to recognise and intercept any subsequent fetches. The implementation in this case is
fairly trivial, as it makes use of the Oasis utility class Findinputstream, which allows a filter
to specify a search string and its replacement, to be applied to data streaming through a URL data
connection.

import java.net.URLConnection;

import Java.io.InputStream;

44 CHAPTER 3. ARCHITECTURE OF OASIS

import Java.io.StringBufferlnputStream;

import oasis.agent.*;

public class FtpRedirectUC extends FilterAgentUC {

public FtpRedirectUC(URLConnection underlying)

throws java.net.MaiformedURLException

{

//upon initialization, make sure the constructor for the encapsulated

//stream gets called

super(underlying);

}

public InputStream getlnputstream() throws Java.io.IOException

// This method is called when it's time to read the data from

//URL. If appropriate, set up a search/replace pair to modify

//the data as it passes through.

{

String type;

InputStream is;

is = uc.getlnputstream();

type = getHeaderField("Content-type");

// We only want to search for and modify document data if the

//document is an HTML document.

if (type != null && type.equals("text/html"))

{

return (InputStream)

new FindInputStream(is, "ftp://", "ftp://redirected_")

} else {

return is;

}

}

}

3.7. IMPLEMENTATION SUMMARY AND LIMITATIONS 45

3.7 Implementation Summary and Limitations

Oasis provides a flexible, extensible architecture for the construction of agent-based online ser-
vices within the context of the existing World Wide Web. The Oasis infrastructure was intended
to provide a platform for experimentation with the two main agent models defined in this thesis,
but is flexible enough to easily support other agent models (as exemplified earlier in this chap-
ter) as well as to be adapted to many agent-based uses other than control-oriented application
deployment.

The first generation Oasis implementation supports the full Oasis architecture, subject to a small
number of simplifying implementation choices. These choices were irrelevant to the successful
validation of the architecture as a platform for efficient implementation of control-based appli-
cations. However, as they may affect the flexibility of Oasis in a production environment, these
choices are briefly listed below:

• Security Model - The Oasis architecture provides for a flexible security model based on
varying levels of trust, as expressed by access control lists, capabilities, or via a secu-
rity manager agent. The current implementation implements only two levels of trust (i.e.,
trusted and untrusted agents, differentiated based on point of origin), and provides the
hooks necessary for the implementation of a more complex security model.

• Name Service - The current Oasis implementation includes only a simple local name ser-
vice that implements a flat name space. This has been adequate for all of the experimental
validation described. However, in practice, it is expected that the native Oasis name ser-
vice will serve only to bootstrap a more comprehensive, possibly distributed, name service
implemented by a trusted agent. The current implementation provides the facilities needed
for the addition of such a name service without modifications to the base system.

• Garbage Collection - The Oasis implementation tracks the usage of threads and windows
by Oasis agents, and reclaims them after an agent's main thread exits. The Java runtime
automatically reclaims memory space used by agent code, once that code is no longer ref-
erenced, and Oasis provides primitives to allow an administrator agent to forcibly remove
Oasis' references to agents, marking them for garbage collection. Oasis does not currently
track the use of object store space, nor does it implement automated garbage collection of
agent references bound into the simple native namespace. Both of these functions can be
provided by agents implementing more sophisticated replacements of the object store and
name space provided in the first Oasis implementation.

46 CHAPTER 3. ARCHITECTURE OF OASIS

• Agent Loading - Oasis does not currently support the loading of agents in Java Archive
format [48]. Addition of this support would require minor modifications to the Oasis proxy
itself, and result in slightly more efficient agent loading, while allowing for the addition
of digital signatures to agents. These are features would make noteworthy additions to a
production deployment of Oasis, but were irrelevant to the validation of the thesis.

• Filter Agent Support - The Oasis architecture allows for the assignment of arbitrary prior-
ities to filter agents, affecting the order in which accesses are encapsulated when multiple
filters indicate interest in a URL. The current implementation only allows the use of two
distinct priorities - one for most filters, and one for filters such as caching filters that require
early access to requests, possibly in order to prevent external data fetching.

The next two chapters demonstrate that the Oasis implementation is efficiently able to support all
of the basic requirements for deployment of control-oriented services, without imposing undue
overhead on traditional Web access.

Chapter 4

Evaluation

The Oasis prototype has been evaluated in the context of representative example applications.
These applications have been chosen to demonstrate both the qualitative and quantitative aspects
of control-oriented application design, as deployed in the context of the World Wide Web us-
ing Oasis. This chapter presents the goals of the evaluation methodology, the rationale for the
selection of the evaluation applications, and the detailed structure of the evaluation applications
themselves.

4.1 Goals

The applications chosen for the evaluation of the Oasis prototype were selected with the following
qualitative goals in mind:

• The applications should produce scenarios in which user and server agents exist alone, as
well as scenarios in which they exist and interact concurrently.

• The applications should, where possible, provide experience with control-oriented models
deployed in the context of real Web-based services. To this end, two of the applications
selected have been chosen to augment and improve existing Web-based services.

• The applications should demonstrate the applicability of control-based techniques to ser-
vices based on a range of data types.

47

48 CHAPTER 4. EVALUATION

• The applications should provide experience with Oasis' support of all of the basic control-
oriented application structures, namely proxy objects, composable services, and control-
lable resource managers, as described in Section 2.2. The applications chosen also demon-
strate derivative application structures, of which the most notable is the support of filtering.

The applications selected also demonstrate the quantitative advantages of control-oriented design
by quantifying the range of reduction in communication that can be obtained. This reduction has
been measured and is characterized both in terms of a reduction in the total bandwidth required, as
well as in terms of the elimination of high-latency interactions over a communication-constrained
link.

4.2 Rationale

Oasis was designed to support the deployment of control-oriented applications in the context of
the World Wide Web, which has been evolving over time. Originally, the Web was intended
solely to support document retrieval (i.e. communication), and this is reflected in the majority
of Web applications and in the infrastructure and protocols supporting them. The subsequent
advent of Java support in Web browsers has permitted a limited degree of control expressed as
"applets" (server agents) executing within the browser. Oasis extends current Web infrastructure
and completes the framework necessary for the support of arbitrary control-oriented applications.
This progression is reflected, using the symbology of Figure 2.2, in Figure 4.1.

The progression of applications used to evaluate the Oasis infrastructure reflects this evolution-
ary path. The first part of the evaluation characterizes both the positive and negative performance
implications of Oasis as a control-oriented extension of the current infrastructure. The second
part of the evaluation measures the benefits obtainable by identifying and exploiting control
inherent in older applications that are constrained, by the current Web infrastructure, to being
communication-oriented rather than control-oriented. The last part of the evaluation then pro-
ceeds to evaluate the benefits available to applications designed specifically to exploit the Oasis
infrastructure.

4.2. RATIONALE 49

(a) pure data retrieval

., ' service

(b) web access with applet capability

data retrieval server agent server agent partitioned user agent
(applet) server agent

(c) web applications in the presence of oasis intermediaries

Figure 4.1: The evolution of the World Wide Web: (a) Initially, only pure communication was possible,

(b) The introduction of Java-capable browsers allowed the construction of limited server agents, whereas
the use of a framework like Oasis in (c) allows the support of arbitrary application structures. Partitioned

user agents are also possible in the Oasis environment, but are not depicted here as they require the
presence of more than two Oasis proxies. Note that these diagrams are rotated 90 degrees with respect
to the orientation used for similar diagrams later in this chapter. In later diagrams, the boundary between
the user and the server network is vertical.

4.2.1 The Oasis Communication Benchmark

The first Oasis evaluation "application" is a group of synthetic benchmark agents that collectively
measure the costs of communication through an Oasis proxy, and characterize some of the bene-
fits that applications may obtain by using Oasis. Because Oasis is implemented as a network of
special HTTP proxies, the communications performance of those proxies affects all applications
using them; the very existence of the proxy mandates some overhead to any client communica-
tions. Similarly, the overhead of the Oasis mechanism for agent composition is a critical factor
in determining the finest granularity at which applications can be split into multiple composed

50 CHAPTER 4. EVALUATION

agents without incurring excessive performance penalties. These two factors are the costs of
application deployment using the Oasis infrastructure.

On the other hand, every eliminated round trip to the server network and every reduction in com-
munication made possible through the presence of the Oasis infrastructure produce performance
benefits to the application. The first experiment characterises the maximum cost and minimum
benefit per operation, as constrained by the infrastructure, that a client will obtain.

4.2.2 The Controllable Cache Manager

The second evaluation application is a controllable cache manager, implemented as an Oasis
filter agent. This application is a nontrivial composable filter that implements a controllable
resource manager. The controllable cache provides a means for servers to control the caching of
data they supply. In the absence of server guidance, a default guidance scheme, similar to that
implemented by other common HTTP proxies, is invoked. This controllable cache provides both
a composable building block that can be deployed in any Oasis proxy to enable caching, and
also provides a control interface that can be used by any service to obtain some of the benefits
of server-influenced cache management at the proxy; these benefits have been leveraged in the
construction of the third evaluation application. Additionally, when augmented with a suitable
cache management agent, the controllable cache provides a platform suitable for transparent,
mechanical identification and exploitation of control characteristics inherent in some ordinary
Web traffic. The second part of the evaluation presents the application of this technique to normal
Web traffic flowing through an Oasis proxy, and demonstrates the gains that may be obtained by
some applications when they are analyzed and adapted to exploit a control-aware infrastructure.
The results obtained represent a lower bound on the improvements obtainable because they permit
further optimization, as discussed in Chapter 5.

Conceptually, the second experiment involves transparently inserting a control-relationship, im-
plemented by a pair of controllable caches, in the communication path of scenario (a) in Fig-
ure 4.1, resulting in Figure 4.2. The controllable caches exist on either side of a constrained
communication link, and a control relationship between them (specifically, diff-based data up-
date) is exploited to reduce traffic whenever possible. This experiment measures the cost of
performing control-based communication in lieu of simple data transfer when the former is an
option.

4.2. RATIONALE 51

web client , server network

(n) web data access with no caching or traditional caching only

o
web client . server network

controllable cache

(b) web access transparently augmented to allow dlff-based update

Figure 4.2: The controllable cache experiment involves encapsulating the constrained communication link
with a pair of controllable caches. Note that (a) corresponds to Figure 4.1(a). In scenario (b), the cache
on the user side can manipulate cached data under control of the cache on the server network. In the

experiment, this capability is used to implement diff-based update for certain data types.

4.2.3 The Weather Browser

The third experiment, in contrast to the second, is based on an application that has been con-
structed from several components designed to control one another. The architecture of the third
application is presented in Figure 4.3. The components of the application can be partitioned
along multiple boundaries; the experiment focusses on comparing the costs of partitioning along
a communication-oriented boundary versus that of partitioning along control-oriented bound-
aries.

The third evaluation application is a weather data presentation system. Its implementation ex-
emplifies the use of proxy objects and composability, and is described later in this chapter. The
measurements of this system serve to demonstrate the benefits that can be obtained when a system

52 CHAPTER 4. EVALUATION

user

 geographical nameserver
~ - - agent

map browser
agent

-+~ control interactions

► data transfer (communication)
weather data

server

Figure 4.3: Structure of the weather browser evaluation application. This application presents many
possibilities for partitioning corresponding to different types of interaction among parts. This application

and its associated partitionings are discussed in detail in Section 4.5.

is designed specifically to exploit control-enabling infrastructure where available.

The next three sections describe the evaluation applications and their roles in the experiments
performed.

4.3 Experiment 1

4.3.1 Architecture of the Communication Benchmark

The communication benchmark is composed of a data referencing agent that measures the com-
munication performance of data fetches in the environment being tested, and a group of agents

4.3. EXPERIMENT 1 53

created to measure the cost of agent composition on a particular Oasis proxy.

lSg|isiif|?SpK:r

Oasis Proxy

(Data Referencer
•>■

user's machine I server machine

Figure 4.4: The various test configurations used to evaluate Oasis communication performance. In
configurations A and B, the data referencer executes as an agent within an Oasis proxy. In configuration
A, network I/O is performed directly via the Java network primitives. In configuration B, I/O is dispatched
through the proxy. In configuration C, the data referencer runs as a standalone Java program, dispatching
its I/O requests through the proxy. Configuration D, in which the data referencer runs as a standalone
Java program using Java network I/O primitives directly, is analogous to configuration A, and has not been

measured separately. Each test configuration was used to produce specific test scenarios, described in
the next chapter. Configuration A was used to measure the standalone Java scenario. Configuration B
was used to measure the cache miss and cache hit (agent) scenarios. Configuration C was used to

measure the cache hit (external prog) scenario.

The data referencing agent is an Oasis agent that can also be executed as a standalone Java ap-
plication. This agent measures the time needed to access data files of varying size from a Web
server. Each file is fetched multiple times, and the transfer rate obtained is calculated. When
executing as an agent within an Oasis proxy, this agent uses the hosting proxy to service its data
requests, or, if permitted by the hosting proxy, can be configured to fetch data directly using Java
network I/O. In the former configuration, the agent incurs the overheads of dispatching through
the proxy, and reaps the benefits thereof, such as access to locally cached data when the hosting
proxy has enabled caching. It thus measures communication performance as available to Oasis

54 CHAPTER 4. EVALUATION

Oasis Proxy

Figure 4.5: The relationship between the timer agent, the transparent layer filters, and the null filter. The
timer agent issues requests to the http: //null/ address space. These requests are dispatched

through the transparent layer filters, and ultimately handled by the null filter. Composition overhead is
measured by measuring the total round trip time taken to complete the request.

agents. In the latter configuration, the data referencer measures the performance of Java network
I/O primitives when used from an agent. In this configuration, the data referencer encounters
no overhead and derives almost no benefit from the hosting Oasis infrastructure; a small ben-
efit results because the hosting Oasis runtime has preinitialized some Java data structures and
warmed caches that are shared by the loaded agent. Lastly, when executed as a truly standalone
application, the data referencer is configured to use an Oasis proxy to service its requests. It
thereby measures the communication performance available to external client applications using
the proxy for data retrieval. Although the standalone data referencer can also be configured not
to use the proxy at all, the resultant configuration is equivalent to the second scenario already
presented, i.e. the measurement of Java network I/O primitives, uninfluenced by the existence of
the proxy. Figure 4.4 illustrates the differences between the test configurations measured.

4.3. EXPERIMENT 1 55

The measurement of composition overhead is accomplished using three cooperating Oasis agents:
a null filter, a transparent layer filter, and a timing agent. The relationship of these three agents
is depicted in Figure 4.5. The null filter is a filter agent that registers with an Oasis proxy's
dispatcher to filter accesses under the http: / /null/ address space. Any requests it receives
are consumed, and a zero-length data object is returned in response1. Any fetches to part of the
null filter space thus amount to the cheapest possible object fetches. The transparent layer filter is
a filter agent that overlays the null address space, passing requests through to the layer below it,
and returning any responses received. Thus, the addition of a null layer filter is the addition of the
cheapest possible agent composition. Multiple null layer filters can be installed in a proxy, and
requests to the null filter space pass through them all before reaching the null filter. The timing
agent makes several requests to the null address space, and computes the cost per request. As
transparent filter layers are added to a proxy, the measured incremental increase in the cost of a
fetch to the null address space yields the cost of agent composition under Oasis.

4.3.2 Characterization of Costs and Benefits

As mentioned above, any application deployed in a control-oriented infrastructure is subject to
certain costs and benefits. The benefits of control-orientedness arise from the change in the na-
ture of the communication performed, whereas the costs typically arise from the control-oriented
infrastructure itself. The maximum costs of a control-oriented infrastructure are easily character-
ized in terms of overhead in the unchanged communications operations they affect. The minimum
benefits realized, however, require greater care, because they arise from changes in the nature of
communication of an application, and those changes are usually application-specific. For exam-
ple, a control-oriented system may be able to completely eliminate requests to the server network
that are made by a communication-oriented equivalent, resulting in an "infinite" benefit, if the
two requests themselves are compared. Needless to say, the control-oriented implementation is
unlikely to see an infinite speedup. In order to avoid this difficulty, measurements of minimal ben-
efit are presented per change in communication operation, e.g. by specifying that every removal
of a roundtrip to the server network in the test environment corresponds to an improvement of at
least 400 ms, because a minimal-cost roundtrip to the server network requires 400ms to process.
Of course, in almost all real applications, the realized benefit is greater due to the application
specific and possibly highly variable amount of time required by the remote server to process and
respond to the request, and, in some cases, also due to significant network latency in communicat-
ing with distant servers. (See Experiment 3 for an example in which eliminated roundtrips have a

1Note that fetching a zero-length data object requires the issuance of a request of approximately 80 bytes, and
the return of an object header of approximately 100 bytes, and is therefore not a null request.

56 CHAPTER 4. EVALUATION

cost that is much greater than that of a minimal-cost interaction.) Similarly, savings in bandwidth
are presented by characterizing the communication bandwidth of various test environments, as
the amount of communication eliminated will depend on the specific application.

Note that this experiment differs from the next two evaluation experiments in that costs and bene-
fits are characterized by timed performance in a particular test environment. The rest of the eval-
uation measures communications usage reduction in a particular application, and applies to any
environment in which the application may be deployed. However, the results of this experiment,
presented in the next chapter, show that the constrained communications link is a bottleneck in
that both the server and the client are capable of saturating it. Consequently, the minimal bene-
fits and maximal costs measured establish bounds on any similarly communication-constrained
environment, independent of improvements in processors used at the server and client.

4.3.3 Experimental Setup

In order to evaluate the communication overhead of using the Oasis infrastructure, as well as
to determine the impact per operation of eliminated roundtrips and reduced communication, the
latency and bandwidth of information retrieval was measured under a number of different sce-
narios. The scenarios measured were:

• modem, standalone Java, wherein communication occurred over a 28.8 Kbps modem line
and the data referencing agent directly accessed Java network primitives.

• modem, cache miss, wherein communication occurred over a 28.8 Kbps modem line and
the data referencing agent dispatched its communication requests through the proxy. The
proxy was configured not to cache the results of data accesses.

• adsl, standalone java, wherein communication occurred over an Asymmetric Digital Sub-
scriber Line (ADSL) connection (1.5 Mbps downstream, 64 Kbps upstream) and the data
referencing agent accessed Java network primitives directly.

• adsl, standalone C, wherein communication occurred over an ADSL line, using a stan-
dalone C equivalent of the data referencing agent. This scenario was measured to ensure
that java performance constraints were not limiting the speed of communication over the
ADSL line.

• adsl, cache miss, wherein communication occured over an ADSL line and the data ref-
erencing agent dispatched its communication requests through the proxy. The proxy was

4.3. EXPERIMENT 1 57

configured not to cache the results of data accesses.

• cache hit (agent), wherein the data referencing agent dispatched all its requests through the
hosting Oasis proxy, and the requests were all satisfied from the proxy cache. The proxy
cache was provided by the caching filter layer descibed in Section 4.4.1.

• cache hit (external prog), wherein the data referencing agent ran as a standalone Java pro-
gram dispatching requests through the Oasis proxy, and those requests were satisfied from
cache hits.

In all cases, the server hosting the accessed test data was a machine capable of saturating the
communications link and was not concurrently engaged for any other purposes. The client was an
average, slower personal computer concurrently executing other desktop applications, including
a Web browser. Specifics of the test environment are presented in the next chapter.

The slower personal computer was also used to measure the cost of Oasis object composition by
repeated fetched to null data, as described earlier.

In brief, the results demonstrate that the use of Oasis adds negligible overhead to communication
over modem and ADSL links and that, even on a relatively slow personal computer running
Java, agent composition overhead is low. The use of Oasis as a communications intermediary
produced a reduction of no more than 0.04% in peak bandwidth, and an increase in access latency
of between 0 and 2.5 ms. The overhead incurred per agent composition is 1.2 milliseconds per
composed layer, or no more than 2% of the fastest possible agent access in the environment
tested.

On the other hand, remote accesses that can be converted to cached accesses as a result of control-
oriented design experience access latency reduced by a factor of between 3.75 (ADSL) and 16.7
(modem), and retrieval bandwidth increased by a factor of between 71.5 (ADSL) and 3915 (mo-
dem). Each access that is eliminated completely produces a reduction in latency of at least 90 ms
(ADSL) or 400 ms (modem), and a potentially large reduction in retrieval time dependent upon
the size of the eliminated access. The potential for these benefits, which can be obtained through
the use of control-oriented design in program structuring, vastly outweighs the minor costs of
using Oasis. The measurements and analysis of this experiment are presented in detail in the next
chapter.

58 CHAPTER 4. EVALUATION

4.4 Experiment 2

4.4.1 Architecture of the Controllable Cache Manager

The controllable cache manager is a composable filter agent that can be loaded into any Oasis
proxy to provide caching of Web accesses made through that proxy. The cache manager utilizes
the persistent object store facility provided by the Oasis proxy to implement an on-disk cache
of data retrieved. As one might expect, URL fetch requests received by the proxy are checked
against the cache in the object store. If unexpired data from an earlier access is present in the
cache, it is returned to the requestor, avoiding a data retrieval over the network. If a cache miss
occurs, the retrieved data is examined. If the data is deemed cachable, the data is stored in the
cache as it is fed back to the requestor.

Traditionally, Web caching has been directed at caching static documents, as might be expected of
a system originally targetted at document retrieval. Caching Web proxies usually cache data only
if the server provides an explicit expiration date via an Expires object header, or if the server
indicates the time at which a document was last modified, via a Last-Modified document
header. Unfortunately, Web servers usually provide an expiration header only when manually
configured to do so by the administrator of the server; this is fairly uncommon at present. How-
ever, for data served from files, a last modification date header is often added automatically by the
Web server. Many caching proxies heuristically cache each document for some fraction of its age
at the time of retrieval, using the time of last modification to determine the age. For documents,
this approach works well and requires minimal effort.

The controllable cache manager differs from the cache in a traditional Web proxy in that retrieved
documents are allowed to specify a cache validator - a server agent which provides assistance in
making caching decisions about the cachability and validity ofthat document. Documents are al-
lowed to specify, via headers, the name of a preferred cache validator, and a URL from which the
validator may be obtained if it is unknown to the proxy. In the event that a cache validator is not
specified, a default validator embodying the caching policy discussed in the previous paragraph
is invoked.

The cache validator of a document is explicitly invoked when the cache manager:

• needs to determine whether a cached copy of the document has expired,

• is about to delete the object from the object store,

4.4. EXPERIMENT 2 59

• needs to determine the cachability of an item being retrieved,

• has downloaded the headers of a document being retrieved, or

• has downloaded the body of a document being retrieved.

When invoked at the last two entry points, the cache validator is permitted to modify the data
cached for the access being handled. This allows for the implementation of custom data update
protocols via a cache validator. In addition, a cache validator, if implemented as a filter agent,
may request notification of all accesses to specific URLs. Collectively, these entry points allow
a considerable degree of flexibility in the implementation of caching and update schemes im-
plemented for any downloaded object. For example, much of the optimal configuration of the
weather browser application used in the third experiment could easily have been implemented as
a cache validator operating on the underlying weather data. Note that this approach was not cho-
sen in practice to allow for easier reconfiguration of the application into the non-control-oriented
partitions used for evaluation by comparison.

4.4.2 Static and Dynamic Data

One reason that online services may benefit from control-oriented application structures is that a
service's client can often be configured to retain memory of interactions with the server, and to
use the retained information, under guidance from the server, to reduce subsequent data transfer.
For online services, which often provide data that is periodically updated, this approach is supe-
rior to simple caching. For example, it permits the separation, and subsequent recombination at
the client, of the static and dynamic components of the data served - later accesses may require
refreshing of any changed dynamic components. The weather browser, used in the third experi-
ment, employs this approach, separating a weather map into the static underlying geography, and
dynamically changing weather data. The cache validators of the controllable cache manager are
well suited to exploiting such a separation and recombination when aided by the server in mak-
ing the separation. However, for certain data types automatic separation is also possible without
server assistance. For example, in the case of text documents a usable, though not necessarily op-
timal, separation of the dynamic components can be obtained by computing the text diff between
the new document and the old one.

By encapsulating a constrained communication link with a pair of controllable caches, as outlined
earlier in Figure 4.2 and presented in detail in Figure 4.6, automatically separatable data can be
exploited in a control-oriented manner. On the first access by a client, both caches are loaded

60 CHAPTER 4. EVALUATION

web client * server network

controllable cache

(a) the first reference to a data item

controllable cache controllable cache

(b) subsequent references

Figure 4.6: Operation of the controllable cache in implementing diff-based cache update.

4.4. EXPERIMENT 2 61

with the data referenced; this is a pure communication operation. However, the server-side cache
adds a token to the outbound data and marks the data such that it will be refreshed, in the client
side cache, via a custom validator. The server-side cache supplies the custom validator on request
from the client. On a subsequent cache miss at the client, the validator is invoked, and presents
the server-side cache with the token from the original, expired document. The server proceeds to
obtain a current copy of the document requested. Once the new document has been obtained the
server computes the differences between the updated copy and the original, assuming it retains a
copy of the original associated with the client's token. If the differences are small, it may then
choose to send the client only the differences rather than a fresh copy of the original document.
These differences constitute an approximate determination of the truly dynamic components of
the document.

4.4.3 Experimental Setup

The dual-cache scenario just described represents a means to automatically convert the commu-
nication between some Web clients and servers into control-based interactions - as such, this
approach has been studied to compare the communication requirements of a control-based appli-
cation to that of the conventional, deployed, communication-oriented equivalent.

An Oasis cache validator supporting the the following types of update was implemented: diff-
updates of textual data (using the diff format of "diff -f" under Unix), recognition of unchanged
nontextual data being refreshed after expiration (i.e. a null diff), and full document update of
changed nontextual data. The applicability and effectiveness of this scheme was measured by ex-
amining data collected from a number of Web proxy caches containing all of their users' cachable
Web accesses for a period of two months. All of the caches collected data using a controllable
cache layer and default validator as described earlier. The caches were modified slightly to record
the occurrence of refreshes, and to save the old and new values of the most recent refresh of every
document. As described in detail in the next chapter, the control-oriented approach was applica-
ble to 89% of the refresh traffic, reducing that segment by about 90%, for an overall elimination
of about 80% of the refresh traffic, (i.e., Refreshes were reduced in size by a factor of 5.)

This experiment examines a control-based approach to Web access involving cachable refreshes
in comparison to the conventional alternative. Note that it does not attempt to measure benefits
that could be obtained by specifically tailoring caches or services to the control-based architec-
ture. That is the focus of the third experiment. In particular, this experiment does not measure
the total reduction in traffic that could be obtained for all normal Web access, mainly because

62 CHAPTER 4. EVALUATION

the normal definition of cachability (see Section 4.4.1) usually excludes data from those services
that are most likely to provide frequent data updates, and are therefore likely to benefit most from
control-based update. It is also in part due to service providers' efforts to thwart normal caching
schemes (to maximize the access count on Web sites, for the benefit of advertisers), and in part
because only the most recent refresh of each data item is recorded. The reduction in communica-
tion that can be realized with application assistance is addressed by the third experiment.

4.5 Experiment 3

4.5.1 Architecture of the Weather Browser

Weather data is presently available via the internet from a multitude of services. Most of these
services provide weather maps that are periodically updated and must be downloaded in their
entirety by the user whenever he wishes to ensure that his information is current. In the pres-
ence of constrained communication, this approach is wasteful of bandwidth, and is hampered by
high latencies in interactions with the user. Users accessing such a service may resort instead
to accessing individual components of the weather maps, such as textual presentations of the
pressure or temperature data presented by location. In doing so, they are fetching only the dy-
namic component of the data, i.e. the weather data, while relying on memory to provide the static
geographical context provided by a map. However, existing internet services provide access to
both the static geographical context underlying weather maps as well as to textual versions of the
dynamic weather data. The weather browser demonstrates the construction of an Oasis applica-
tion, built by composing these existing services, that is able to provide undegraded service in the
presence of constrained communication, because it incurs no more communication overhead in
the steady state than that minimally required to fetch the dynamic weather data itself.

The weather browser thus presents a unified interface to several sources of meteorological and
geographical data available via the internet. It is modelled after other weather browsers such as
the Weather Anchordesk[7], but has been implemented to take advantage of the Oasis framework,
by exposing the control and communication relationships between major application components.
As such, it illustrates the advantages and flexibility that can be realized by applications that are
designed to exploit an infrastructure that supports control. The weather browser employs proxy
objects, service composability, and filter agents, while leveraging the availability of composable
filters and controllable resource management as embodied in the controllable cache manager.

4.5. EXPERIMENT 3 63

location selection

map images

augmentation
instructions

control interactions

data transfer (communication)

Figure 4.7: The components of the weather browser application. This is a higher level view of Figure 4.3.

Figure 4.7 presents a high-level view of the architecture of the weather browser. As can be
seen, the weather browser is implemented as a set of interacting Oasis agents. The browser
agent interacts with the user, allowing selection of a geographical region for which weather data
is desired. This selection information is conveyed to the integrator agent, which queries the
available data sources, merges their results, and presents them to the browser agent for display to
the user. Each of the data sources is encapsulated using a data agent, which serves to interface
each traditional Web weather service to the Oasis environment, and to the environment of this
application, in particular.

4.5.2 Application Structure and Partitioning

The weather browser application must manage a number of simple and composite data types,
namely geographical maps, geographic names, weather station location data, temperature data,

64 CHAPTER 4. EVALUATION

weather maps, etc. Further, all of these data items can be composed with each other by correlating
them using the underlying geographical context, i.e. the latitude(s) and longitudes(s) at which
the data applies. This structure suggests a natural control-oriented partitioning of the application:
one agent is allocated to manipulate each of the major data types, and allows this manipulation
to be performed under control of other agents; agents exploit geographical context to reference
each other's data. Thus, the map browser displays and augments geographical maps while the
data agents for geographic names, weather station location data and weather data manage access
to their respective data sources, and the integrator controls the interactions amongst the agents,
embodying the knowledge to create a weather map. All of the agents implement control interfaces
appropriate to a provider and/or to a consumer of geographical data, and these interfaces are the
primary mechanism for control interaction.

In this scenario, the boundaries between these agents represent coarse-grained control-oriented
lines along which the application can be partitioned. Any such partitioning can be realized at
runtime, and depends simply on the location, relative to the constrained link, at which each agent
is started. However, further partitioning options also lie within the agents delineated above.

Separation of control and data processing may be possible even within an agent manipulating just
one data type. Of the weather browser agents, many of the data agents can be further split into
a control processing part and a data manipulation part. For example, consider the geographical
name server agent which is a server agent encapsulating access to a geographical name service
on the server network. Its function is to accept a query string from the map browser (or from
anyone else), and to return the location(s), represented by latitude and longitude, that may match
the name query. Because the name server agent encapsulates access to an ordinary Web server,
it must perform a simple data processing function in addition to controlling that server: it has to
filter out extraneous information and HTML markup from the server's output. As the percentage
of extraneous output may be as high as 90-95% of the total for geographical names that generate
many matches, it is desirable to allow the data processing to occur on the server side of the
network, reducing the size of the results communicated over the constrained link. By separating
the control processing and the data manipulation, the name server agent can be split into a proxy
object operating on the client side of the constrained link, controlling a data manipulation agent
on the server network. The proxy object represents the name server in the user's environment,
accepts requests on behalf of the user's map browser, instructs the data manipulation "sub-agent"
on the server network to perform the appropriate queries and to process the results, and eventually
returns a response to the map browser. Other data agents employed in the weather browser
application also benefit from a similar separation of control and data under certain conditions.

With a small amount of application programmer assistance in structuring each agent, the separa-

4.5. EXPERIMENTS 65

tion of control and data processing within the components of the agent is easily realized within
the Oasis infrastructure. To this end, all of the data agents described have been implemented ex-
plicitly as the combination of a proxy object and a filter agent. (This implementation is reflected
in Figure 4.3.) The control processing of the agent lies within the proxy object, whereas the data
manipulation lies within the filter agent. The proxy object and the filter agent interact using a
URL-based interface, allowing the two to transparently reside, if necessary, in different Oasis
proxies, as Oasis will forward the HTTP accesses from one proxy to the next. When such a data
agent is first loaded, the proxy object initializes and checks for the existence of its companion
filter agent. This check is performed simply by attempting to access the URL-based control in-
terface of the filter- if the access fails, the proxy object concludes that no companion filter exists
further upstream (i.e. closer to the server network), and initializes one on the Oasis proxy where
it is running. Thus, a data agent may be run purely as a server agent when no upstream filter has
been started or as a user agent (as the user-side proxy object controls the filter) when partitioned
across multiple proxies. Note that this approach has the advantage that the user and server agent
implementations of the data agents are identical, and need only be tagged with the desired agent
type when they are loaded. This approach also means that in the server agent scenario some extra
code is downloaded to the client to test for the upstream companion filter. As the code for the
filter itself need not be downloaded unless needed, the penalty is small, is paid only infrequently
due to caching at the client, and is well worth the reduction in effort required to support different
application structures.

4.5.3 Implementation Overview

As mentioned earlier, the weather browser is implemented by a group of cooperating agents.
Listed below are the main component agents, their functions, and implementation issues they
present. Note that the first two agents are indivisible entities, whereas the rest are all data agents,
partitionable as described in the previous section.

• The map browser agent presents the end user with a graphical interface to the application.
The map browser allows the user to query the geographical name server for a location to
map, and presents the integrator with the location selected. Thereafter, it displays maps and
markup information under control of the integrator until the user chooses a new location to
browse. The map browser can be run as either a user agent or a server agent.

• The integrator obtains a map reference for the map browser to display, and interacts with
the data agents to obtain the information used to mark up the map. Although the integrator

66 CHAPTER 4. EVALUATION

can be ran as either type of agent, it must execute in the same Oasis proxy as that hosting
the map browser. This is because the interface between the map browser and the integrator
is based on procedure call rather than URL-access, causing the two to be tightly coupled.
This tightly coupled implementation was chosen for simplicity given that separating the
browser from the integrator is not significantly different, in terms of communication cost,
from separating all of the data agents from the integrator.

• The geographical name server agent is a data agent encapsulating access to a Web gazetteer
provided by the U.S. Census Bureau [53]. As described earlier, it can executed as a server
agent, or as a user agent when partitioned. Partitioning is usually beneficial for this agent,
as it allows for filtering of extraneous data before that data is transmitted over the con-
strained link. Results returned from the geographical name server queries are tagged, via a

custom validator in the controllable Oasis cache, as never expiring.

• The map source agent is a data agent encapsulating access to a Web-based mapping service.
The implemented example utilizes the U.S. Census Bureau's TIGER mapping service [52].
The map server agent interacts with the controllable cache to indicate to the cache that
map data never expires. Although the map source agent can be partitioned if desired,
partitioning does not produce a significant difference in communication cost, as the map
server does not perform much data manipulation. However, a practical advantage of the
partitioned scenario is that any accessed maps are cached at the Oasis proxy on the server
side as well as at the one closer to the user; if multiple users are accessing the same service
from different client machines, they benefit from maps that are already in the cache of
the server-side proxy. Note that maps would not ordinarily be cached at the server side
in the absence of the partitioned map source agent because the maps from the Web server
are dynamically generated, and not identified as cachable by standard Web proxy caching
algorithms.

• The weather station locator agent encapsulates access to a database of weather stations
in the United States. The database is available as a text file via the Web. As such, this
agent performs a significant data manipulation operation - given a rectangular area within
the US, the agent searches the text file and generates a list of the stations falling within
that rectangular area. If this agent is partitioned, the data file need not be downloaded
in its entirety. Rather, only short queries and responses cross the communication link.
If the agent runs as a server agent, it needs to download the entire database on the first
access, but subsequent accesses require no more communication, as the controllable cache
is instructed that the database does not expire. In practice, the mode in which this agent
executes depends largely on the number of queries that an application expects to produce.

4.5. EXPERIMENT 3 67

If only a few distinct regions are to be queried, downloading the entire database is not
warranted, but if a great diversity of regions is to be queried, the initial cost may be justified.
Of course, the agent could have been implemented to dynamically decide to switch from
user agent mode to server agent mode dynamically, depending on the access pattern. This
is easily implementable in practice but has not been necessary for the purposes of the
evaluation.

• The weather data agent encapsulates access to a database of weather data. Weather data
agents have been implemented for multiple weather databases on the Web, and can be se-
lected at runtime. As with other data agents, these too can be partitioned. Partitioning of
weather data agents into a user agent relationship is generally favorable due to two fac-
tors. Firstly, weather data agents generally need to process the retrieved data to eliminate
extraneous data and HTML markup. As with the geographical name server agent, com-
munications can be reduced by performing this data manipulation on the server network.
Secondly, the weather data agents accept compound queries requiring data from several
weather stations, usually corresponding to the set of weather stations to be queried for a
given map. These aggregate queries must typically be decomposed into individual queries
when the weather data server is queried. When the weather data agent runs as a server
agent, this means that multiple queries must be issued to the weather server over the con-
strained link, involving multiple high-latency round trips, and increased communication
due to HTTP protocol overhead on each request. When the weather data agent runs as
a user agent, the aggregate query can be transferred to the server network and executed
there, eliminating the multiple wasteful round trips. Thus, unless there is a need to cache
weather data for individual weather stations (which might be required by an usual access
pattern producing several partially overlapping aggregate queries) partitioning is usually
beneficial. The weather data agent demonstrates the use of a custom cache validator that
implements a value-based expiration scheme for weather data. In particular, aggregate
queries and individual queries returning valid data are cached until they reach a certain
age. However, responses wherein the weather data server indicates that a station is un-
known are recognized and are cached for a different, much longer, period of time. These
responses arise because weather servers usually do not carry data for all known weather
stations. As the unknown status of a station at a server is unlikely to change, the retention
of this status conserves bandwidth and elminates costly uninformative round trips to the
server.

68 CHAPTER 4. EVALUATION

4.5.4 Experimental Setup

The weather data browser provides a means to compare the communication performance of an
application designed explicitly to take advantage of control-based partitions to that of the same
application as it might have been implemented using the terminal or workstation models. In
order to perform this comparison, the weather browser was partitioned across a communications
link in different ways, and all communication across the link was measured while selecting,
querying, and updating the geographic data for a particular region. Four different partitionings of
the weather browser were measured. These partitionings are compared graphically in Figure 4.8,
and depicted in detail in Figures 4.9, 4.10, 4.11, and 4.12. The four partitionings were:

• the terminal partitioning, in which all of the agents executed on the server network, and
the user's machine acted only as an input/output device. Communication to and from the
user was via the X-window system, and consisted primarily of transfers of pure data, as
depicted by Figure 4.9.

• the workstation partitioning, in which all of the agents were configured to run as server
agents running on the user's machine. Communication with the server network primarily
represented accesses to the underlying databases, as can be seen from Figure 4.10.

• hybrid scenario 1, wherein the map browser and integrator agents were configured as server
agents, but all data agents were partitioned into a pair of agents consisting of a user-side
proxy object controlling a server-side data manipulation agent. Communication occurring
across the constrained link in this scenario represented control interactions and the un-
avoidable pure communication components of the original data transfers. This situation is
depicted in detail in Figure 4.11.

• hybrid scenario 2, wherein the map browser, integrator, geographical name server and map
source were configured as server agents, while the station locator and weather data agents
were partitioned as in hybrid scenario 1. As might be expected, the resultant communica-
tion across the constrained link was composed primarily of data interactions required by
the geographical name server and map source plus the control and pure communication in-
teractions required by the partitioned station locator and weather data agents. This scenario
is illustrated in Figure 4.12.

Because the X window system protocol is not optimized for use over constrained links, the
steady-state map update cost of an "ideal" terminal implementation was also measured for com-
parison purposes. The update cost of an ideal implementation was approximated as the cost of

4.5. EXPERIMENTS 69

transferring, on every update, a compressed GIF [11] format image containing a Screenshot of the
image presented by the map browser's GUI. The ideal model assumes that there is no protocol
overhead, and no cost for transmission of user keystrokes back to the server.

In brief, these measurements demonstrate that this application, when partitioned along control-
oriented lines, is able to achieve a substantial reduction in traffic. In the steady state, about 95% of
all update traffic was eliminated, as compared to a workstation or ideal terminal implementation
of the same application, (i.e. update traffic was reduced in size by a factor of about 20). These
results are presented in detail in the next chapter.

70 CHAPTER 4. EVALUATION

geographical ndmeserver
' - - ^agent ;

map browser
agent

leather data
server

(a) The terminal, workstation, and first hybrid partitioning schemes

geographical r&meserver
' ~ ~- - agent -

map browser
agent

weather station
database

weather data
server

WE:

Hi
(b) The second hybrid partitioning scheme

Figure 4.8: Partitions of the weather browser application that were studied in the experiment. Note that

the data path labels from Figure 4.3 have been omitted here for clarity.

4.5. EXPERIMENTS 71

user's device (client) server network

Oasis proxy

_J<gystrokgSM

-jf (X events)

X-window system
server

m
a
P

a
r
o
w
s
e
r

i
n
f
e
9
r
a
f
o
r

geographical nameserver
agent

map source agent

station locator
agent

weather data
agent

fast network data servers

Figure 4.9: The terminal partitioning is characterized by transfers of pure data between the application
and the terminal. These transfers correspond to input keystrokes from the user and application output to
be displayed. In the evaluated example, the X window system was used for application interaction with the

user, and thus the data transfers are encapsulated as X window system key events and image drawing

requests.

72 CHAPTER 4. EVALUATION

user's device (client) server network

Oasis proxy

m
a
P

b
r
o
w
s
e
r

i
n
t
e
9
r
a
t
o
r

geographical nameserver
agent

map source agent

station locator
agent

weather data
agent

fast communication data servers

Figure 4.10: The workstation partitioning is characterized by communication with data servers on the

server network using the native query and response formats of those servers, which may not be well

suited to interaction over a constrained link. In this example, pure data communication occurs in response
to queries sent to the data servers involved. The gazetteer responds to a geographical name query with a
list of all matching names and data related to those matches, including geographic location data; the map
server dynamically generates a map image for a specified location; the weather station database is simply
a published data file, and, in this scenario, is downloaded in its entirety when first referenced; the weather
data server, when queried, provides a variety of meterological measurements for a single weather station.

4.5. EXPERIMENTS 73

Client-side Oasis Proxy

user's device server network
(client)

Server-side Oasis Proxy

I

m

a

P

b

r

o

w

s

e

r

geographical nameserver\
agent

formulate compact
query

map source agent

formulate compact query -

station locator agent

formulate query-

weather data agent

formulate aggregate
query

.geographical nameserver
\ agent

compact feme query

cachable name and

location Information

I

translate client query to
server query

filter response to select/
* information of interest'

compact rfcap area i
specification

map source agent

express client query in,
^server's query language"

cachable «hap data '

z > mark result cachable'

station locator agent

request and cache,
data file

area speqffication

Cachable wAather station
names arU locations'

I

interpret query

search data file
"formulate response

aggregated wtather dajta
data qjuery

caching control

weather data agent

■ decompose client query

" ~f issue individual
V queries to server

(^decompose aggregate^Zll^iS!]!!^!!!^^^^3'? A—filter results, compose
"n88"" response -^m^y^^^^^-^^-y^— aggregate response'

gazetteer

map server

fast communication data servers

Figure 4.11: Communication occurring across the constrained link in hybrid scenario 1 reflects the
benefits of allowing control interactions to occur in both directions across the constrained communication
link. Each data agent is partitioned into a pair of components controlling one another, and every such
component presents an interface for controlling the manipulation of data it accesses. In effect, each
data server is thus augmented with a control interface. The control-oriented nature of the interface
imposes a service partitioning requiring optimization of communication before it occurs. In the reverse
direction, server agents such as the weather data validator create a similar mechanism to optimize

cache-related communication before it occurs. The resultant optimizations are simply effects of requiring
each service to be partitioned such that data-reducing operations occur before communication where

possible. In this example, these effects correspond to the discarding of irrelevant inputs (prefiltering), query

aggregation producing a reduction in protocol overhead, and elimination of unnecessary communication
operations through awareness of the underlying data (e.g. through the use of the controllable cache). The
data transfers that remain in this control-oriented partitioning are smaller than their counterparts in the

workstation model, and correspond to those parts of the original transfers that are pure communication
and cannot be eliminated simply by use of a control-oriented partitioning.

74 CHAPTER 4. EVALUATION

user's device server network
(client)

Client-side Oasis Proxy Server-side Qasis_Proxy_

■' K
fast communication data servers

Figure 4.12: In the second hybrid partitioning, the geographical name server agent and the map source
agent are not partitioned, and reside entirely on the client-side proxy, as in the workstation scenario. The
station locator and weather data agents are partitioned just as in the first hybrid scenario. As might be
expected, the traffic across the constrained link in this situation is simply composed of the respective traffic

components from the workstation partitioning and from the first hybrid partitioning.

Chapter 5

Experimental Results

This chapter presents the results of the experiments that were described in the previous chapter.
For each experiment, a description of the measurements taken is presented, followed by the
measurements themselves, and an analysis of the results.

5.1 Experiment 1: Oasis Costs and Benefits

5.1.1 Experimental Synopsis

In order to characterize the costs and benefits that affect Oasis applications, the Oasis framework
has been evaluated in the context of a test environment using two different constrained commu-
nications links of varying capacity - a modem link, typical of those commonplace in households
today, and an ADSL (Asymmetric Digital Subscriber Link) connection, of the type expected to
become common for Web access over the next several years. In the tests, both the user's machine
and the server machine were running the Linux 2.0 kernel and version 1.1.3 of the Java Devel-
opment Kit [21], augmented with the TYA 1.0 just-in-time compiler [25]. The server machine
was a dedicated 300 MHz Pentium U processor running the Apache [3] Web server, whereas
the user's machine was an older and slower 66 Mhz Pentium processor concurrently running a
user's browsing and editing software in addition to the test code. In each test, an Oasis proxy or
standalone program executing on the user's machine communicated with a Web server executing
on the server machine via either a 28.8 Kbps modem, or via an ADSL line. The ADSL line
tested was rated to provide maximum data transfer rates of 1.5 Mbits/second downstream (to-

75

76 CHAPTER 5. EXPERIMENTAL RESULTS

wards the user's machine) and 64 Kbits/second upstream. In all tests involving an Oasis proxy,
the proxy was preloaded with 5 commonly used filter agents in addition to the test agent, and
where applicable, the caching layer filter. The other preloaded filters provide functionality such
as Web access anonymization, commercial message removal, and ftp redirection as described in
Section 3.6.

As described earlier in Section 4.3.3, both the modem and ADSL links were tested using a data
referencing agent run as an Oasis agent, and as a standalone Java program. The ADSL line
was also evaluated using a C program that was equivalent to the standalone Java program, in
order to ensure that the overhead imposed by the Java runtime was not limiting the bandwidth
measured. The data retrieval characteristics for objects in cache were also measured for accesses
from both Oasis agents running within a caching proxy, and for external programs using the
proxy to dispatch data requests. Lastly, a separate set of agents was used to measure the overhead
of composing two agents in an Oasis proxy. Note that in every test involving an Oasis proxy, the
proxy ran on the user's 66 MHz Pentium machine. Thus, all costs and benefits measured are
those of deploying the proxy on the relatively slow user machine. If the user's hardware is
replaced by a faster processor on an equivalent communication link, the overheads of using the
proxy, currently dominated by processor time, are reduced. The benefits of using the proxy are
correspondingly increased.

5.1.2 Results and Analysis

Communications Constraints

As described earlier, communications performance in the various test environments has been
evaluated by measuring the time needed to access files of various sizes in each scenario. Per-
formance is thus evaluated while including all protocol overhead necessary to perform the file
accesses. For example, the protocol overhead incurred by a proxied agent accessing a single byte
test file is the transmission of a 156 byte request over the underlying network from the requestor
to the server, and the reception of 173 bytes of response headers in addition to the accessed data.
This overhead is almost constant for all other scenarios and file sizes, varying only by a few bytes
that depend on the filename and scenario in question. Although the overhead is negligible for
large file accesses, it is significant for smaller accesses. In particular, this overhead affects the
measured access latency greatly, because a full request must be sent, and a full set of response
headers read back, before the first data byte from a URL can be accessed. Access latency is
thus treated as the time elapsed before the first data byte can be read from a URL. The protocol

5.1. EXPERIMENT 1: OASIS COSTS AND BENEFITS 77

10000000

CO -o c
o u
0) <fl

E

Communication Performance

o o o o o o o o o o o o o

request size(bytes)

o o o o o o

o o o o o o o

o o o o o o o o

■ modem (all -adsl (all) cache hit (external) —*— cache hit (agent)

Figure 5.1: Summary of the communications performance measurements. Measurements were taken
for URL accesses of size 1 byte, 1 KB, 4 KB, 256 KB, 1 MB, 2 MB and 16 MB. The two modem data
sets (standalone Java and cache miss) are presented as a single line, as are the three ADSL data sets

(standalone Java, cache miss and standalone Q. This has been done because the members of each
group are indistinguishable from one another on the scale of this graph.

overhead similarly affects the measured bandwidth for accesses to small files. Note, therefore,
that the measurements of bandwidth and latency presented here do not simply correspond to the
bandwidth and latency obtainable by the underlying TCP/IP on the communication medium in
question.

Figure 5.1 summarizes the communications measurements from the various test scenarios. As
expected, the throughput obtained by each request increases with request size until the data ref-
erencing agent is able to saturate the communications channel, whereafter data retrieval time
increases linearly. On the scale of the figure, there are no visible differences between the differ-
ent scenarios examined for each communication medium, so the scenarios for modem access and
ADSL access have been collapsed into two lines in the figure. Figure 5.2 and Figure 5.3 present
subsets of these measurements to allow comparison of the file retrieval bandwidth and latency

78 CHAPTER 5. EXPERIMENTAL RESULTS

modem, standalone Java

modem, cache miss

adsl, standalone Java

adsl, cache miss (agent)

adsl, standalone C

cache hit (agent)

cache hit (external prog)

Peak Bandwidth

10

Kbytes/sec

100 1000 10000 100000

i^1i3.27

r?^3.26

1178.91

i • r
1178.27

I I
1179.01

I
112803.13

I
1841.55

I

Figure 5.2: The peak bandwidth obtained by each experimental scenario. These numbers determine
the rate of linear increase in retrieval time, once the size of the file being retrieved exceeds a minimum
dependent upon the communication medium. In all scenarios, variation in the measured peak bandwidth
was less than 2%.

characteristics obtained with and without the proxy.

Figure 5.2 demonstrates that the use of an Oasis proxy on a 28.8 Kbps modem connection or
on an ADSL connection does not result in more than 0.04% reduction in peak communication
bandwidth obtained. However, this tiny reduction in bandwidth may be due to variations in net-
work conditions rather than to the use of the proxy. The peak bandwidth obtained on a cache hit
demonstrates that the Oasis proxy can be used without becoming a bandwidth bottleneck even on
much faster connections. The performance of the external C client, which is essentially identical
to that of the Java clients, also confirms that the Java implementation was not a bottleneck in
the ADSL scenario. Lastly, the difference between an internal agent and external client in band-
width obtained on a cache hit is mainly due to the fact that an agent executes, in the Linux Java
environment, within the same address space as the Oasis proxy and the caching layer whereas
an external client does not. As such, the agent is able to exchange data with the proxy and with
other agents simply by moving data around with no operating system involvement. Transmission
of data between the proxy and the external client, on the other hand, requires repeated expensive
crossing of the protection boundaries between the two address spaces and the kernel, resulting in

5.1. EXPERIMENT 1: OASIS COSTS AND BENEFITS 79

modem, standalone Java m

modem, cache miss

adsl, standalone Java

adsl, cache miss (agent)

adsl, standalone C

cache hit (agent)

cache hit (external prog) | 85

50

IB 24

Communication Latency

100 150

milliseconds

200 250

I I
300 350 400

I I
398

1396

I*

92.5

98

Figure 5.3: The time taken by each tested scenario to retrieve a 1-byte file. The measurements presented

are median values obtained from 200 trials. In all scenarios, the median values measured varied by
approximately 2% between experimental runs.

substantial data copying at each step.

Figure 5.3 shows the measured median latency of reading a single byte file in the various test
scenarios. The figure compares median measured latency rather than mean latency in order to
exclude the effects of certain external sources of variation, as discussed at length later. The
charted data demonstrate that the use of the Oasis proxy does not add significant overhead to
access latency. For modem accesses, the overhead of the proxy was completely undetectable.
The ADSL measurements, on the other hand, reflect an increase of 2.5 ms in the median access
latency when using the proxy. However, the actual cost of using the proxy is likely to have been
too small for this experiment to accurately determine, given the presence of numerous external
factors described below. As an examination of the ADSL data sets shows a difference of only
1 ms between the minimum access latencies measured with and without the proxy, the true cost
of utilizing the proxy is likely to be between 1ms and 2.5ms; 2.5ms is henceforth treated as an
upper bound on the increase in access latency that can be attributed to use of the proxy.

Figure 5.3 also demonstrates that a C equivalent of the data referencing agent is unable to achieve
better access latency than the Java agents. The higher latency is incurred because the C language

80 CHAPTER 5. EXPERIMENTAL RESULTS

Variation in Latency Measurement Samples

500

450

400

ilwrttttt^i

50 100

sample #

150 200

Figure 5.4: The variation in access latency experienced by the data referencing agent using the proxy to
access a single byte file. These samples are those of the adsl, cache miss (agent) data set. Over half of
the 200 accesses cluster around a single value, but occasionally, external events influence the measure-
ments, causing significant outliers. The outliers cluster around specific values, probably corresponding to

the events that caused them.

runtime, unlike the Java runtime, does not cache the results of hostname lookups that are per-
formed while accessing the test URL. If the C code is reorganized (in a manner specific to this
test) to eliminate duplicated hostname lookups, an improvement of 20 ms in access latency re-
sults, resulting in slightly better overall performance compared to the standalone and agent Java
implementations.

It is noteworthy that all comparisons of access latency measurements collected in this experiment
have been carried out by comparing median, rather than mean access times, in order to factor out
the effect of external influences. Although the measurement iterations of this test were spaced
out carefully to avoid local resource contention, the test is very susceptible to external events
occurring in the underlying shared computing and network resources. Each measured access is
relatively short and factors such as thread scheduling within the Java runtime, page faults, pro-
cessor scheduling, availability of network buffers, delays at network routers, network errors and
resultant retransmissions (significant for modem access) or simply network contention can all
add a significant amount to measured access latency. Figure 5.4 illustrates the variation encoun-

5.1. EXPERIMENT 1: OASIS COSTS AND BENEFITS 81

500

450

400

<o 35°
C 300
O
g 250
Cfl
= 200

150

100

50

0

Ranked Latency Measurements

20 40 60
percentile

80 100

- Standalone Java • Cache Miss (agent) ■Standalone C

Figure 5.5: Ranked latency measurement samples for the three ADSL data sets. As more than half of the
samples in each data set are uninfluenced by external events, the median is a good basis for comparison
of latency measurements.

tered in a typical set of latency measurements. Notice that outlying measurements are clustered
at certain values, almost certainly corresponding to the additional overhead of specific events that
created them. This distribution is not a normal distribution. Measurements cluster around the
true latency, and all outliers lie above the true value. Thus, the number and magnitude of outly-
ing measurements, and therefore the arithmetic mean of the data set, depend on uncontrollable
events external to the experiment. Consequently, the arithmetic mean is not a metric suitable for
comparing the results of the various tests. For example, the arithmetic mean of the data presented
in Figure 5.4 is 114.56 ms whereas the median is 92.5 ms. Between the data set presented, and
other data sets of 200 latency measurements from identical scenarios, the arithmetic mean was
observed to vary by as much as 20%, while the variation in the median was about 2%.

Figure 5.5 depicts the ranked measurements from the three ADSL data sets, and embodies the
rationale for choosing the median, rather than the mean, as a metric for comparison. Notice that
in all three of the data sets, well over half of the measurements are uninfluenced by external
factors. The "steps" in the ranked data sets correspond to effects of different types of external
event; differences in the number of steps represent differences in the number of events to which a
particular scenario is susceptible. For example, the C program is not susceptible to the effects of

82 CHAPTER 5. EXPERIMENTAL RESULTS

Composition Overhead

10 20 30 40 50

of composed agents

Figure 5.6: The increase in the cost of invoking a method on an agent, as a function of the number of
composed layers that must be traversed to reach that agent. These measurements were taken from a

proxy running on the user's machine.

Java thread scheduling, and, as a smaller, task-specific, program, is less likely to encounter page
faults or processor context switches. As such, the ranked data from the C program exhibits fewer
steps, but still reflects the infrequent occurrence of large deviations from the base latency. Be-
cause more than half of the measurements in each data set are uninfluenced by external events, the
median is also uninfluenced by external events, and thus serves as a good metric for comparison
between data sets.

Composition Cost

Figure 5.6 shows the measured linear increase in agent invocation time as null layers were added
to the experiment. The slope of the graph is the incremental cost per composition, 1.47 millisec-
onds per composition. This is only 2.5% of the cheapest possible (i.e. null) agent invocation
in the tested configuration, and would be an even smaller fraction of any real invocation. (Real
invocations require additional time to process the actions invoked.) As applications usually only
have a small number of composed layers, this overhead is acceptable and negligible.

5.1. EXPERIMENT 1: OASIS COSTS AND BENEFITS 83

Guaranteed Minimal Gains

The above results characterize the major costs and constraints affecting communication and com-
position via the Oasis proxy. However, these results are also the basis for the minimum gains
guaranteed by the infrastructure. In particular, the communication-related benefits of control can
be regarded, at the lowest level, as consisting of the elimination of some round trips to the server,
the reduction in volume of some data transfers, and the conversion of some data transfers to
cachable accesses. In conjuction with the measurements obtained:

1. Each completely eliminated round trip to the server network reduces application latency by
at least 400 ms while communicating over a 28.8 Kbps modem network, or by at least 90 ms
while communicating over a 1.5 Mbit/64 Kbit ADSL network. It is important to note that,
in the context of a real application deployed over the internet, the realized latency benefit
due to an eliminated round trip is likely to be far greater. This is because the network
latency in accessing a distant server may be much greater than that of the test scenarios,
and because server queries to an online service usually involve server processing delay in
addition to file retrieval time. The realized latency benefit is thus likely to range from a few
seconds to a few minutes in many applications.

2. Reductions in data transfer produce an application communication delay reduction of at
least 306 ms per kilobyte in a 28.8 Kbps modem environment. In the ADSL environment,
reductions in downstream data transfer (from the server network to the user's machine)
produce a communication delay reduction of at least 5.6 ms per kilobyte. Reductions
in upstream data transfer have not been explicitly measured by this experiment, but can
be extrapolated from the measured results; they should produce a communication delay
reduction of at least 130 ms per kilobyte.

3. Communication requests that are converted to cached accesses produce a reduction of at
least 375 ms in access latency in the modem environment, or a reduction of at least 66 ms
in the ADSL environment. Once again, these latency savings are likely to be considerably
higher in a real application due to eliminated processing time and network delays. In
addition, every 28.8 Kbps modem network access converted to a cached access produces a
saving of approximately (375 + 305.7 k) ms, where k is the size of the converted access,
in kilobytes. Similary, converted requests for ADSL downstream communication save
approximately (66 + b.bk) ms, and converted requests for ADSL upstream communication
save approximately (66 + 130 k) ms.

84 CHAPTER 5. EXPERIMENTAL RESULTS

Thus, control-oriented applications constructed using Oasis stand to obtain substantial benefits in
communication-constrained environments within a wide range of constraining parameters. The
degree of improvement depends upon the application environment, and on the extent to which
control-oriented structuring changes the communication behavior of the application. On the other
hand, the communication penalties for any application using the Oasis framework are low — less
than 0.04% change in obtainable peak bandwidth, and between 1 and 2.5 ms additional commu-
nication latency, whether or not the application is control-oriented. The Oasis environment is
therefore a practical infrastructure for the deployment of online service applications, providing
the potential for large benefits without extracting a significant penalty.

The next two experiments evaluate the extent to which the communication characteristics of an
online service are improved by application transparent and application-assisted introduction of
control respectively. While this experiment has evaluated timed communication performance
within particular test environments and provides the means to relate communication characteris-
tics to timing improvements, the results of the next two experiments are presented in terms of their
impact upon application communication characteristics. As such, those results are applicable to
any test communication environment in which Oasis is deployed.

5.2 Experiment 2: Diff-based Cache Update

5.2.1 Experimental Synopsis

In order to evaluate the communication requirements of a control-based approach to document
refreshing in a Web proxy cache, three proxy caches were analyzed. Each proxy cache used the
conservative algorithm, as described in the previous chapter, to select cachable accesses and to
determine the lifetime of the accessed documents in the cache. When a document was refreshed
(due to expiry from the cache, or due to an explicit refresh request) the original and new values
were recorded. For documents that were refreshed multiple times, only the most recent refresh
was recorded.

The data in each of the three caches was the result of channelling all of the Web accesses of
one or two users through an Oasis proxy over a two month period. The number of users in
each case was restricted in order to ensure capture of the maximum possible variety of refreshes,
some of which might otherwise have been lost due to capacity constraints combined with the
tendency of a cache to favor accesses duplicated by multiple users. Once the proxies had run

5.2. EXPERIMENT 2: DIFF-BASED CACHE UPDATE 85

for two months, each cache was examined to determine the documents that had been cached
and subsequently refreshed. Every such document was then examined to determine the type of
data accessed in order to select document fetches that would have been made more efficient, or
eliminated altogether, using the diff-based update.

The diff algorithm implemented allows diff-based update of textual data using diffs in the format
of Unix's "diff -f," and recognition of null updates (i.e., unchanged data) of any type. Thus,
refetches of unchanged data and updates to textual data are replaced with a diff update in this
scenario. The size of the replacement diffs and associated headers was computed and compared
to the size of the original refreshes.

The three caches studied were configured as follows:

• "doublecache" - a cache, shared by two users, in a proxy placed in between the browsers
of the users and the server network. This cache was thus secondary only to the on-disk
cache of each user's browser.

• "primary" - the first in a chain of two proxies placed in between the browser of a single
user and the server network. This user had configured his browser to use only a small
in-memory cache. Thus, this cache was essentially the user's primary cache.

• "secondary" - the second in the chain of two proxies behind "primary" above. This cache
was secondary to the cache of the first chained proxy.

5.2.2 Results and Analysis

The contents of the three caches studied are detailed in Table 5.1. As can be seen from the
tables, all three caches exhibited similar distributions of the types of cache updates. For the
"doublecache" cache, Figure 5.7 depicts the classification of the updates that occurred in the
two months observed. In this and the other cases, about half of the updates that occurred could
have been reduced to null diffs ("unchanged"), and another 39% of the updates ("diffable") could
have been replaced by text diffs, leaving only 11% of the updates unchanged. In the diff-based
update scheme implemented, the size of the updates replacing the unchanged and diffable updates
respectively amounted to 2-3.5% and 3-6% of the of the original total update traffic. In this
experiment, null diffs were thus, on average, 6-6.5% of the size of the refreshes they replaced,
whereas text diffs were 8-18% of the size of the refreshes they replaced.

86 CHAPTER 5. EXPERIMENTAL RESULTS

"doublecache"

files headers
(bytes)

content
(bytes)

total
(bytes)

percentage

refreshed
diffable

same

1537
185

1256

529022

60917

435708

8139832
3297767

3880534

8668854
3358684

4316242

100.0

38.7

49.8

Text diffs

Null diffs

185

1256

37000

251200

234440

0

271440

251200

3.1

2.9

"primary"

files headers
(bytes)

content
(bytes)

total
(bytes)

percentage

refreshed
diffable
same

909
245
620

308593
79342

214880

3161942
1180393
1724564

3470535
1259735
1939444

100.0
36.3
55.9

Text diffs
Null diffs

245
620

49000
124000

174451
0

223451
124000

6.4
3.6

"secondary"

files headers
(bytes)

content
(bytes)

total
(bytes)

percentage

refreshed
diffable
same

936
284
612

313207
89264

211287

3058105
1226767
1663602

3371312
1316031
1874889

100.0
39.0
55.6

Text Diffs
Null Diffs

284
612

56800
122400

88592
0

145392
122400

4.3
3.6

Table 5.1: Analysis of the refresh traffic observed in each of the three caches.

5.2. EXPERIMENT 2: DIFF-BASED CACHE UPDATE 87

These results demonstrate the large savings in communication that may be obtained simply by
identifying and exploiting periodic rereferences to certain data sources on a server network. The
savings identified represent only those applicable to conservatively cachable accesses whose
static and dynamic components can be mechanically identified and separated. Note that within
this domain, gains even greater than those demonstrated are possible through further optimiza-
tion. For example, the reductions in traffic could be improved further by utilizing a more com-
pact diff format. Such optimizations have not been explored further, as this experiment serves
to demonstrate the potential benefits of introducing control-based partitioning where there was
none before, rather than to evaluate the performance of any specific implemented partitioning.

As mentioned earlier, the retention of the conservative caching algorithm allows this experiment
to be carried out in the context of a traditional Web proxy cache, but is also a major limiting factor
in the identification of eligible data access patterns. The conservative caching algorithm usually
eliminates the caching of accesses to sources of data that are constantly updated, i.e. accesses
to "online services," and favors the caching of unchanging documents that are likely to be valid
indefinitely, or not to be rereferenced after expiry from the cache. In fact, data that were cached
and later reloaded due to expiration of the copy or update at the source constituted no more than
10% of the total contents of each cache at the end of the experiment.

In order to mechanically capture accesses to online services, the conservative caching algorithm
could be replaced by one that caches all accesses, while on each access verifying the validity of
cached data that is not deemed conservatively cachable. This approach is no more expensive than
that of refetching such data on every access, and is less expensive whenever memory of a prior ac-
cess permits the application of diff-based update. While the modified algorithm would correctly
identify more access patterns that can benefit from diff-based update, it would still be hampered
by its inability to handle references to non-textual data. However, if the controllable cache is
allowed to receive application guidance as to the data types being accessed, ready identification
of all data access patterns that are optimizable using diff-based update is possible.

With application guidance, the frequency of updates and validity checks as well as the size of
resultant updates can be reduced. In a control-oriented application, the provision of application
guidance is easy in the presence of a controllable cache, while the control-oriented nature of the
application itself serves to eliminate many updates entirely. Necessary updates, i.e. communica-
tion, are still performed, but unnecessary data updates are replaced by more compact transfers of
control. This approach is evaluated in the next experiment.

88 CHAPTER 5. EXPERIMENTAL RESULTS

Composition of Refreshed Data

11%

50%

39%

II diffable
■ unchanged
D other

Figure 5.7: Breakdown of the types refresh traffic that occurred in "doublecache." The breakdown of the
refresh traffic in the other two caches was very similar.

5.3 Experiment 3: Weather Browsing

5.3.1 Experimental Synopsis

In order to compare the communication costs of the four different weather browser partition-
ings, each partitioning was initialized and guided through an identical sequence of data retrieval
actions. A program interposed between the user-side and server-side Oasis proxies hosting the
browser agents measured the amount of communication occurring at each step. These results
document the communication bandwidth utilized by the various partitionings. The measured re-
sults are compared to each other, and to an "ideal" terminal partitioning defined as described in
Section 4.5.4. Communications latency, on the other hand, has not been measured precisely due
to the difficulty of characterising the beginning and end of each measured step in the absence
of modifications to the application, and due to the wide variation in latency caused by variation
in the response times of the underlying data sources. However, it has been noted that some par-
titionings exhibit significantly better latency than others due to the elimination of high-latency
roundtrips to the server network. The performance advantage of those partitionings is charac-
terised by presenting the costs of the roundtrips that are eliminated.

5.3. EXPERIMENT 3: WEATHER BROWSING 89

Each of the partitionings was evaluated by guiding the system through the steps necessary to
retrieve the map for an urban area (Pittsburgh, PA) and to augment that map with weather condi-
tions at all known weather stations on the map, as provided by the weather data server at Texas
A&M University. Measurements of the cumulative amount of data sent and received were taken
at the following points:

• initialization - just after the initialization of the weather browser application, including
downloading any uncached agent code.

• GNS query - after the geographic name server has been queried for, and returned, all pos-
sible matches for the name "Pittsburgh, PA".

• map load - after the unaugmented geographical map of the Pittsburgh area has been re-
trieved and displayed.

• weather stns - after the weather station server has been queried to determine all weather
stations within the viewable area of the map.

• complete - after all the weather data for the map have been retrieved and have been used
to augment the weather map appropriately.

• first update - after the processing of a user-requested update occuring soon after the
weather data query is complete, and before the weather data has expired from the cache.

• refresh - after the expiration, and subsequent update of, the weather data. The incremental
cost of the refresh is representative of the size of the cost of subsequent updates to the data.
As such, it represents the steady state cost of running the weather browser, and is the most
important of the measurements taken.

For all partitionings other than that of the terminal partitioning, the measurements have been
performed twice. This was done in order to demonstrate that there is no change, other than the
change in initialization costs, in going from a cold cache to a warm cache scenario. The terminal
partitioning does not involve any caching at the user side, and has hence only been measured once.
In addition, the measurements of the implemented terminal partitioning include two additional
costs that are not incurred by any of the other partitionings. These are X init and quit, and they
respectively reflect the cost of initializing the connection of the Oasis proxy to the X window
system at the user's host prior to the initialization of the weather browser, and the cost of deleting
the X window corresponding to the weather browser upon termination of the application.

All of the measured results are presented in the next section.

90 CHAPTER 5. EXPERIMENTAL RESULTS

50000

40000

%
& 30000
CO o
ü

20000

10000

Cost of a cache update

60000-,—aJllll

*M

?£M

m

Jifl jül

terminal ideal workstn workstn Hybridl Hybridl Hybrid2 Hybrid2
terminal (cold) (warm) (cold) (warm) (cold) (warm)

Figure 5.8: Steady-state communications cost of each partitioning. These figures represent the cost of
updating the weather map presented to the user. Measurements designated "(warm)" are from experiments
in which the cache of the Oasis proxy was preloaded by a previous execution of the weather browser.

Those designated "cold" are from experiments where the cache had not been preloaded.

5.3.2 Results and Analysis

Tables 5.2 and 5.3 present the cumulative communication utilization and incremental communi-
cation cost of every operation that was measured for each of the weather browser partitionings.
These measurements are compared in Figures 5.8, 5.9, 5.10, and 5.11.

Figure 5.8 presents the steady-state cost of an update when running the weather browser in each
of the measured configurations. This cost is the most important of all of the measured costs
because all of the other costs, for an appropriately partitioned application, are one-time startup
costs and could be incurred at a time when bandwidth is plentiful, such as when a mobile client is
physically plugged into the server network. The update cost, on the other hand, must be incurred
periodically, no matter what the cost of bandwidth, if the data presented are to be up to date. As

5.3. EXPERIMENT 3: WEATHER BROWSING 91

Workstation Partitioning - Cold Cache

initialization GNS query map load weather stns complete first update refresh

bytes sent

bytes rcvd

total

4475

73431

77906

4697

77952

82649

5851

95404

101255

6085

138421

144506

17193

161528

178721

17193

161528

178721

26123

174579

200702

Cost 77906 4743 18606 43251 34215 0 21981

Workstation Partitioning - Warm Cache

initialization GNS query map load weather stns complete first update refresh

bytes sent

bytes rcvd

total

805

5653

6458

805

5653

6458

805

5653

6458

805

5653

6458

9735

18704

28439

9735

18704

28439

18665

31755

50420

Cost 6458 0 0 0 21981 0 21981

Hybrid 1 - Cold Cache

initialization GNS query map load weather stns complete first update refresh

bytes sent

bytes rcvd

total

5741

68976

74717

5949

69340

75289

7041

86975

94016

7275

87771

95046

8319

97480

105799

8319

97480

105799

8595

98129

106724

Cost 74717 572 18747 1030 10753 0 925

Hybrid 1 - Warm Cache

initialization GNS query map load weather stns complete first update refresh

bytes sent
bytes rcvd

total

2071

1198
3269

2071

1198
3269

2071

1198
3269

2071

1198

3269

2347

1887
4234

2347
1887
4234

2623
2592
5215

Cost 3269 0 0 0 965 0 981

Hybrid 2 - Cold Cache

initialization GNS query map load weather stns complete first update refresh

bytes sent
bytes rcvd

total

5115

71195

76310

5337

75716

81053

6491

93168

99659

6725

93964

100689

7960

104744

112704

7960

104744

112704

8236

105441

113677

Cost 76310 4743 18606 1030 12015 0 973

Hybrid 2 - Warm Cache

initialization GNS query map load weather stns complete first update refresh

bytes sent

bytes rcvd
total

1445

3417
4862

1445

3417
4862

1445

3417
4862

1445

3417

4862

1721

4114

5835

1721

4114

5835

1997

4811
6808

Cost 4862 0 0 0 973 0 973

Table 5.2: Communication measurements of the various partitionings. In each group, all rows other than
the "Cost" row represent cumulative byte counts measured from the start of the experiment.

92 CHAPTER 5. EXPERIMENTAL RESULTS

Terminal Partitioning

Xinit initial-
ization

GNS
query

map
load

weather
stns

complete first
up-
date

refresh quit

bytes sent

bytes rcvd
total

36156
8020

44176

65008
24060

89068

68272

27968
96240

76668
599116

675784

78172

604340
682512

84636

635356
719992

98492

685208
783700

110940

731632
842572

112924

733184

846108

Cost 44176 44892 7172 579544 6728 37480 63708 58872 3536

Table 5.3: Communications measurements of the terminal partitioning. This partitioning required addi-

tional communication prior to initialization of, and upon termination of, the application.

is apparent from the figure, the agent-based partitionings of the weather browser require a much
smaller amount of update communication than any of the other measured scenarios do. In partic-
ular, the hybrid scenarios perform equally well, and require less than 5% of the communication
required by the workstation or ideal terminal partitionings on an update. An update performed
by the implemented terminal partitioning, as expected, is significantly more expensive, requiring
about three times the amount of communication required by the ideal terminal and workstation
partitionings.

This result reflects the fact that the hybrid partitionings of the weather browser permit improved
separation of the dynamic and static components of the data being presented, and that both hybrid
partitionings are able to exploit the use of data filtration on the server network. In each hybrid
scenario, the weather update involves only the data managed by the weather data agent, whereas
data supplied by each of the other agents are identified as static and are cached. Both of the
hybrid scenarios partition the weather data agent identically, and as a result the two produce the
same update cost in the experimental results. In each hybrid scenario, the filter agent component
of the weather data agent reduces the cost of updating the weather data by preprocessing the
data before it leaves the server network. On the other hand, the poor performance of the terminal
partitionings reflects the fact that the static and dynamic components of the data are not separated,
and thus that the entire weather map must be fetched on each update. Although the workstation
partitioning is able to exploit the separation of dynamic and static data due to its implementation
as a set of cooperating agents, it is still unable to reap the benefits of preprocessing the weather
data on the server network.

Figure 5.9 demonstrates that the agent-based partitionings are competitive with the workstation
and terminal approaches in initialization costs. For the terminal model, the cost of initialization

5.3. EXPERIMENT 3: WEATHER BROWSING 93

80000

70000

60000

-. 50000 w <a

e 4oooo

o
° 30000

20000

10000

0

^-3
3

1 f
1
iff

terminal workstn
(cold)

Initialization costs

^2

I
■
Pi

~^Z/$i

I'll

I

workstn
(warm)

Hybridl
(cold)

Hybridl
(warm)

Hybrid2
(cold)

Hybrid2
(warm)

Figure 5.9: The costs of initializing each partitioning of the weather browser application. The initialization
costs of the terminal partitioning do not include the substantial "X init" cost presented in Table 5.3.

is the protocol cost of requesting that the window system on the user's terminal create and ini-
tialize a window for the weather browser. For all the hybrid partitionings and the workstation
partitioning, the cost of initialization is the cost of downloading the code to effect the window
creation and initialization. As might be expected, all three of these initialization costs are greatly
reduced by caching. Notice that the Hybrid 1 partitioning is cheaper to initialize than Hybrid
2, and that the initialization costs of the two differ by the same amount in both warm and cold
cache scenarios. This small difference is due to the extra overhead, incurred by Hybrid 2, of
detecting the absence of a server-side filter component for the geographical name server agent
and the map source agent. As mentioned earlier, Hybrid 1 could also theoretically profit from
the downloading from a smaller amount of agent code, as the user-side proxy need not retrieve
the filter agent component of the partitioned geographical name server and map source agents.
However, the implementation approach chosen foregoes this advantage in favor of the flexibility
to allow easy implementation of all the tested scenarios using identical agent code. In practice,

94 CHAPTER 5. EXPERIMENTAL RESULTS

Cumulative Bandwidth Usage - All Scenarios

Hybrid2 (warm)
Hybrid2 (cold)

Hybrid 1 (warm)
Hybridl (cold)

workstn (warm)

workstn (cold)

terminal

c
o
to
_N
«

X

c
o
to
.N

'E

CD
CO
O

c
to

cr a. ai
a> CO .c
c E

CD
5

a.
CO

E
CO c

o
'5 cr

C3)
_c
to
XI a.
3

500000 «
J3

400000 g
Ü

3 cr

Eterminal Hworkstn (cold) Dworkstn (warm) HHybridl (cold) BHybridl (warm) MHybrid2 (cold) MHybrid2 (warm)

Figure 5.10: The cumulative communication costs of the various partitionings. This figure depicts the
significantly higher cost of the implemented terminal partitioning compared to that of any other partitioning.
Figure 5.11 presents the same data in the absence of that of the terminal partitioning.

caching ensures that the benefits of any optimization to remedy this effect benefits only the very
first run of the application. Caching of the agent code already ensures that subsequent runs are
not affected.

Figures 5.10 and 5.11 present the cumulative use of bandwidth by each scenario evaluated. In
the latter figure, the costs of the implemented terminal model, which dwarf those of the other
approaches in the former, have been removed to permit better comparison of the remaining ap-
proaches. In these figures, note that the slope of the graphs between "quick refresh" and "updating

5.3. EXPERIMENT 3: WEATHER BROWSING 95

CO
o
u

Cumulative Communication -- Cold Cache
250000

200000 -

8 150000
-Q

100000

50000 - -

■workstn (cold)

•Hybrid2(cold)

»Hybridl (cold)

f
/

J> ^ &

i> .# ^

1

£

Cumulative Communication -- Warm Cache

DUUUU -

50000 - n n
/ T

40000 - /
CD

30000 -

20000 -

P—/ W
O
U

i_i I_I

10000 -

0 c w** i r 4 ■ I— -i 7——i }

workstn (warm)

Hybrid2 (warm)

Hybridl (warm)

•^
& & <&

•#
/

J> <? W J1

£ # 4
JO

.$ ^
4?

£

s ■&

£

Figure 5.11: Cumulative communication costs of partitionings other than the terminal partitioning. The

upper graph depicts measurements taken from experiments run on a proxy that had not already hosted
the application, i.e. had a cold cache. The lower graph depicts the same experiments run on a proxy with
a warm cache.

96 CHAPTER 5. EXPERIMENTAL RESULTS

refresh" represents the cost of an update, as graphed in Figure 5.8. This is the rate at which the
cumulative communication cost would increase with continued viewing of the same, periodically
updating weather data set.

Observed Latency Benefits

By changing the nature of the communication across the constrained link, agent-based applica-
tions are often able to obtain improvements in .application latency that cannot be duplicated by
other implementation approaches. In the case of the weather browser, both hybrid architectures,
each using a partitioned weather data agent, eliminate multiple high-latency queries of weather
data for individual weather stations. Multiple queries of individual weather stations are exported
to the server network as a single compound query. On the server network, the server-side part
of the weather data agent decomposes this query into multiple queries issued to the weather data
server, collates the result, and returns a single composite result. As mentioned before, this reduces
communication bandwith used due to reduced protocol overhead, but it also reduces application
latency by eliminating high-latency round trips over the constrained link. In the experiement con-
ducted, every round trip eliminated corresponds to a reduction of about half a second in total data
retrieval time. This figure has not been measured precisely due to the high variation in response
times of the internet-based weather data sources, combined with the difficulty of measuring the
latency of individual parts of the data retrieval process.

The hybrid weather browser architectures also reduce latency as they decompose the accessed
data into cachable and uncachable components. This allows the caching of data that would oth-
erwise not have been cached because it would have been part of a larger uncachable data type.
For example, both hybrid architectures are able to cache the geographical maps underlying the
weather maps that are accessed. While a similar combination of data from cachable and un-
cachable data sources may be achieved in a workstation architecture, support for control permits
much greater flexibility in designing this type of decomposition. In the absence of server agents,
the data source on a server network has no means to provide any assistance in the handling of its
data, e.g., it cannot aid the user in making caching decisions, or in augmenting or interpreting the
data supplied. In the context of the weather browser, the hybrid partitionings eliminate duplicate
fetches of geographical maps, and where possible, duplicate queries of weather station data. At
times of high load, each request made to the map source may take several minutes to process,
and each weather station query may take several seconds. Elimination of expensive requests like
these whenever possible produces a noticeable improvement in application responsiveness.

5.4. LESSONS LEARNED 97

5.4 Lessons Learned

The results presented in this chapter demonstrate the potential benefits of deploying a control-
oriented infrastructure, the use of control-oriented techniques to reduce communication in un-
modifiable legacy applications, and the benefits available to an application constructed specifi-
cally to leverage an infrastructure supporting control. However, these experiments also provide
experience with the design of control-oriented services and applications, yielding procedural in-
sight that is valuable to application designers.

Control-oriented considerations of importance in the early design and modularization stages of
building an online service application are similar to those important in building an application
as a distributed object system. In particular, control-oriented design suggests that an application
be built around the data-types and data objects that will be manipulated by the application, and
that modularization be data-centric. Data-centric modularization encourages the development
of modules that interact by controlling one another, exchanging data only when no alternative
exists. As demonstrated by the development of the weather browser, one technique by which this
modularization can be achieved is by implementing the application as a set of simpler cooperating
services, each of which is primarily responsible for a single data type, which are ultimately
composed together to form the final product. Note that this type of modularization is often not a
requirement in traditional server-client or 3-tier server-middleware-client system designs where
an object system is not involved.

Appropriately modularized applications present many opportunities for control-oriented parti-
tioning along module boundaries. An ideal partitioning should be picked to minimize the re-
maining data movement, and to ensure that the remaining data movement is accompanied by the
movement, if necessary, of a control interface to that data. Although the set of possibilities for
application partitioning may be large in applications with many subsystems, the bulk of the ben-
efit of control-oriented partitioning can be obtained by identifying and applying these principles
to just those subsystems that are responsible for most of the dynamically changing content in the
data flow. In the case of the weather browser application, this simplification is exemplified by the
Hybrid 2, which in practice performs almost as well as the Hybrid 1 partitioning.

Lastly, it is worth noting that the repetitive development effort required to produce a control-
oriented service can be reduced greatly by the identification and development of appropriate
domain-specific building blocks beyond those provided by a general-purpose infrastructure. For
example, filter agents represent the most specialized building block provided by Oasis, but the
structure of the weather browser exhibits some redundancy that can be embodied in a more spe-

98 CHAPTER 5. EXPERIMENTAL RESULTS

cialized abstraction. In particular, each of the weather browser's data agents consist of a proxy
object acting in cooperation with a data manipulation entity. Although not explored in the imple-
mented weather browser, structural similarities like this provide an opportunity for the construc-
tion of application-specific building blocks to increase code reuse and reduce development effort.
In the case of the weather browser, an appropriate building block would have been a structure en-
capsulating a proxy object plus a data manipulating entity and handling the communication and
partitioning issues inherent in this separatable arrangement. An application developer deploying
several control-oriented services is likely to profit from observing and exploiting opportunities
for the construction of similar application-specific building blocks.

Chapter 6

Conclusions

As internet access becomes a household commodity, the number of users connected to its ex-
tremities via comparatively slow links continues to grow rapidly. At the same time, the explosive
growth of the World Wide Web and its resultant importance as an information resource is encour-
aging the development of devices that allow ubiquitous, but often limited, internet access. Both of
these trends mean that for the foreseeable future, there will be rapid growth in the number of users
accessing the internet via constrained communication links. Meanwhile, the nature of the data
available on the internet is also evolving. In addition to the static or slowly changing documents
that the Web originally contained, more and more online services are appearing, presenting fre-
quently updated data that users will need to access, even over constrained communication links.
Addressing this problem has been the motivation for this thesis.

Section 6.1 summarizes the thesis research that has been presented and lists the resultant contri-
butions. Opportunities for future research that arise as a consequence of this work are presented
in Section 6.2.

6.1 Contributions

This thesis has proposed and evaluated the use of control-oriented application design and deploy-
ment as a means to reduce the communication requirements necessary to deploy an online service
in the face of constrained communication. The nature of control has been explored through the
development of an infrastructure to support control-oriented application partitioning. The mea-

99

100 CHAPTER 6. CONCLUSIONS

surement of a set of sample applications has quantified some of the benefits realizable through
control-oriented partitioning.

The contributions of this thesis research can be thought of as conceptual contributions, practical
contributions arising from the implemented artifacts, and observations based on insights gained
in the course of demonstrating the thesis.

Conceptual Contributions

• This work introduces the concept of control as a fundamental application functionality. The
thesis defines control and employs it as a central factor in the development of many of the
application models presented.

• A taxonomy of applications, arising from the analysis of application functionalities. This
taxonomy identifies various application classes, and provides key insight into the nature of
the communication employed by communicating applications. It also serves to delineate
the application classes to which the techniques presented in the thesis are best applied.

• Basic design principles, including formalized agent models, that an application designer
can employ in order to ensure that an online service can be partitioned to leverage control-
oriented infrastructure whenever one is available.

• A set of building blocks for control-based applications. These building blocks are proposed
as a minimal set that must be supported by a control-oriented infrastructure in order to
enable a wide variety of applications. They are not necessarily the only possible such set,
but form a set that has proven easy to support without imposing undue constraints on the
applications built upon them.

• A mechanism for the integration of control-oriented infrastructure and services with the
existing infrastructure of the World Wide Web. The use of a network of computationally
capable proxies ensures backward compatibility and easy deployment of control-oriented
applications.

Practical Contributions

• Implementation of the Oasis Web proxy, which is an easily extensible Web proxy server as
well as an infrastructure for the support of control-oriented applications.

6.1. CONTRIBUTIONS 101

• Implementation of the building blocks for agent support, including Java classes to aid in the
development of agent code, and classes to allow agent code to interface to the Web-based
functions of the Oasis proxy.

• Implementation of many agent-based extensions to the Oasis proxy that provide functions
that are useful to end users. For example, example extensions have been written to support
selection and removal of commercial advertising from Web content, access anonymization,
traffic monitoring, proxy caching with potential for personalized indexing of referenced
data, etc.

• Implementation, as an example application, of a system that allows diff-based cache update
in the Oasis proxy systems.

• The development of a system that can be used to compose, or to add value to, existing Web
services in a practical manner, producing integrated applications. This is not a distinct
implementation component, but rather a practical use of the Oasis system as a whole that
is distinct from the use being investigated in this research.

Observations

• Application guidance can have tremendous positive impact on the management of accessed
data by intermediaries, especially when composite or opaque data types are being managed.
The thesis work has demonstrated this in the context of caching, but it is likely to be true in
other arenas too. For example, [33] has obtained similar results in the realm of managing
application data access in an environment with variable bandwidth.

• The ability to partition a client of a data server is a mechanism that allows for greater
flexibility in overcoming network limitations,.simply by allowing for changes in the com-
munication protocol utilized over the remote link. For example, flexible partitioning may
allow the aggregation of multiple queries into a single compound query, reducing the pro-
tocol overhead incurred by the client.

• Web proxy caches that are currently in common use are not well suited to the types of data
access involved in deploying an online service. Growth of the internet and contention at
popular online services will eventually require that this problem be addressed at an infras-
tructure level.

• At a point at which resource availability changes dramatically in a network, it appears to
be advantageous to deploy transducers that are aware of, and can help manage, the impact

102 CHAPTER 6. CONCLUSIONS

of the change. This research work demonstrates the effectiveness of transducers placed
around the endpoints of a constrained communication link. It mirrors the trend in efforts
that address other discontinuities, such as those addressing the large variations in display
and input mechanisms that arise when mobile clients share access to a system that also
serves desktop workstations.

6.2 Future Directions

This research has opened up several avenues for further exploration. Efforts for which this work
may serve as a starting point can be thought of as

1. extensions to the application design and development models,

2. extensions to and alternative uses of the implemented system, or

3. new directions.

Application Design and Development

• The system models and building blocks proposed by this research form one set from which
applications can be built in a control-oriented manner. However, it is possible that other
combinations of basic agent types may also prove to be more convenient in practice. Fur-
ther research will determine whether or not an alternative set of basic agent types is more
practical for application designers.

• All of the control-oriented structures supported are very simple, in order to ensure applica-
bility that is almost universal. However, if large numbers of control-oriented applications
are deployed, it is likely that more complicated, and therefore more specialized, appli-
cation structures built from simpler ones will become desirable as standard components.
For example, as mentioned earlier, standard structures to support fault tolerance and recon-
nectability would be useful to a wide variety of applications. Similarly, particular structures
may be useful for interfacing with underlying protocols or infrastructure. For example, fil-
ter agents have proven extremely useful, in the studies described here, for the purposes of
interfacing Oasis agents to the Web infrastructure underlying them. Thus, the need for stan-
dardization of new application structures will arise with experience; these structures need
to be defined and eventually supported in Oasis or other infrastructure supporting control.

6.2. FUTURE DIRECTIONS 103

Extensions to the implemented system.

• The implemented Oasis artifact presents many opportunities for extension. The most im-
portant such opportunity is in the development of security policies to govern trust issues
relating to, verification of, and access granted to, downloaded code. The current Oasis
implementation provides many hooks for the institution of flexible security policies. How-
ever, the policies implemented are very simple, such as the use of access control based on
the server from which agent code is obtained. Research that is being carried out in security
policy as applicable to other systems based on mobile code is also likely to be applicable
to Oasis.

• Oasis could also be extended to handle alternative sets of agent building blocks, as men-
tioned in the previous section, or to provide a standard means for locating and download-
ing support for unknown structures. These conveniences will aid the development of large
reusable components for rapid construction of applications.

• A network of Oasis proxies presents a flexible framework that can be used for many pur-
poses other than simply for experimentation with control-oriented applications. For exam-
ple, if the proxy were modified to handle protocols other than HTTP, it could be used as
an experimental platform for many "active networking" applications. In the context of the
Web, the existing Oasis proxies can be used as a platform for adding value to any Web
service, content monitoring and analysis (e.g. indexing all Web sites visited by each user,
and using those statistics to predict the user's interest in other sites), automatic translation
of Web pages, etc.

New Directions

Oasis provides an enabling technology for a number of broader research topics to build upon.
In particular, Oasis enables the creation of networks of controllable objects and applications.
In deploying these networks, the following questions arise: How are networks of controllable
objects managed? What sorts of resource discovery and adaptation to network changes should be
supported in such a network? Does control easily provide all the functionality desired by those
developing "active" technologies? How are interfaces to existing "passive" entities constructed
for the purposes of interfacing to the network?

• Management of controllable objects is a topic that has been explored only superficially. It
differs from the management of passive entities in that controllable objects can be involved

104 CHAPTER 6. CONCLUSIONS

in management functions. This allows for the implementation of management capabilities
that far surpass simple monitoring. For example, centralized policies and guidelines can be
chosen dynamically for the network and effected at each controllable object. The evolution
and exploitation of standard networking hardware towards a high degree of SNMP [41]
controllability is indicative of a fraction of convenience that may be realized by software
controllability. In general, software applications are more complex than hardware applica-
tions, and thus offer controllable parameters. Thus, controllable software represents even
greater opportunity for management convenience.

• Resource discovery and network adaptation rely on the development of mechanisms by
which network entities can collaborate to find one another, or to optimize performance.
Although both of these issues have been considered in the context of data-driven infras-
tructures, their implementation to exploit the capabilities of a control-based framework has
not yet been addressed.

The recent development of many "active" technologies seems to reflect the need for control
in many software and hardware arenas. However, the perceived motivation, in many cases,
has not been described as a need for control, but rather as a need for something else,
such as for centralized security and accountability [5] or as for device independence [1].
A belief underlying the Oasis infrastructure is that control is an enabling technology for
such goals, and that these goals can all be easily expressed in terms of control. Future
work within the control oriented frameworks will determine whether or not control is a
convenient technology for expressing "active" requirements.

Lastly, the interfacing of programs and devices to a network of controllable entities is
an area that merits further investigation. The development of control interfaces to legacy
applications and devices still relies greatly upon the intuition of the interface designer.
By contrast, it is quite easy for the original developer of an application to design around
control-oriented communication boundaries, leading to a trivial control-oriented decompo-
sition of the application into its components. Further examination of this issue may yield
more mechanized ways to interface to older, data-driven applications.

Bibliography

[1] ADOBE, INC. Postscript Language Reference Manual. No. ISBN 0-201-18127-4. Addison-
Wesley Publishing Company, December 1990.

[2] ANONYMIZER, INC. The handy anonymizer guide. http://www.anonymizer.com/
guide.shtml, 1998.

[3] APACHE PROJECT. Apache HTTP server project, http://www.apache.org/, 1998.

[4] ATHAN, A., AND DUCHAMP, D. Agent-mediated message passing for constrained envi-
ronments. In Proceedings of the Mobile and Location-Independent Computing Symposium
(August 1993), USENIX.

[5] AT&T LABS. The Geoplex project, http://www.geoplex.com/, 1998.

[6] BADRINATH, B. R., BAKRE, A., IMIELINSKI, T., AND MARANTZ, R. Handling mo-
bile clients: A case for indirect interaction. In Proceedings of the 4th IEEE Workshop on
Workstation Operating Systems (Napa, October 1993), IEEE, pp. 91-97.

[7] BASS, L., CLEMENTS, P., AND KAZMAN, R. Software Architecture in Practice. No. ISBN
0-201-19930-0. Addison-Wesley Publishing Company, January 1998, ch. 18 - The Mete-
orological Anchor Desk System: A Case Study in Building a Web-Based System from
Off-the-Shelf Components.

[8] BENNETT, F., RICHARDSON, T., AND HARTER, A. Teleporting - making applications
mobile. In Proceedings of the Workshop on Mobile Computing Systems and Applications
(Santa Cruz, CA, December 1994), IEEE, pp. 82-84.

[9] BROOKS, C, MAZER, M., MEEKS, S., AND MILLER, J. Application-specific proxy
servers as http stream transducers. In World Wide Web Journal: 4th International World
Wide Web Conference (December 1995).

105

106 BIBLIOGRAPHY

[10] CAMPIONE, M., AND WALRATH, K. The Java Tutorial: Object-Oriented Programming
for the Internet, 2nd ed. No. ISBN 0-201-31007-4. Addison-Wesley Publishing Company,
1998, ch. 8: Overview of Applets.

[11] COMPUSERVE, INC. Graphics interchange format(sm), version 89a(modified). Tech. rep.,
CompuServe, 1990. CompuServe filename: GIF89M.TXT.

[12] DEVARAKONDA, M., MUKHERJEE, A., AND KISH, W. Meta-scripts as a mechanism for
complex web services. In Proceedings of the Fifth Workshop on Hot Topics in Operating
Systems (Orcas Island, WA, May 1995), IEEE.

[13] DUCHAMP, D. Issues in wireless mobile computing. In Proceedings of the Third Workshop
on Workstation Operating Systems (Key Biscayne, FL, April 1992), IEEE.

[14] FÖRDE, C. Publishing on the infobahn. http://www.bcsc.gov.bc.ca/cforde/xplor95.html,
February 1995.

[15] Fox, A., GRIBBLE, S. D., BREWER, E. A., AND AMIR, E. Adapting to network and
client variability via on-demand dynamic distillation. In Proceedings of the Seventh Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems (October 1996), ACM.

[16] GENERAL MAGIC. Odyssey frequently asked questions, http://www.genmagic.com/
technology/odysseyJaq.html, 1998.

[17] GOLDBERG, D., AND TSO, M. How to program networked portable computers. In Pro-
ceedings of the 4th IEEE Workshop on Workstation Operating Systems (Napa, CA, October
1993), IEEE, pp. 30-33.

[18] HOKIMOTO, A., KURIHARA, K., AND NAKAJIMA, T. An approach for constructing mo-
bile appplications using service proxies. In Proceedings of the 16th International Confer-
ence on Distributed Computing Systems.

[19] HOUSEL, B. C, AND LINDQUIST, D. B. WebExpress: A system for optimizing web
browsing in a wireless environment. In Proceedings of the Second Annual International
Conference on Mobile Computing and Networking (November 1996), ACM.

[20] J. PURDY, ED. Oracle in motion: Managing database applications remotely. Mobile Letter
(January 1995).

[21] JAVASOFT. The java development kit (JDK), http://java.sun.com/products/jdk/, 1998.

BIBLIOGRAPHY 107

[22] JOSEPH, A. D., TAUBER, J. A., AND KAASHOEK., M. F. Mobile computing with the

Rover toolkit. IEEE Transactions on Computers: Special issue on Mobile Computing

(March 1997).

[23] KAASHOEK, M. F., PINCKNEY, T., AND TAUBER, J. A. Dynamic documents: Mobile

wireless access to the WWW. In Proceedings of the Workshop on Mobile Computing Sys-

tems and Applications (Santa Cruz, CA, December 1994), IEEE, pp. 179-184.

[24] KEHOE, C, AND PITKOW, J. E. GVU'S seventh WWW user survey. Tech. rep., Georgia

Institute of Technology, June 1997.

[25] KLEINE, A. TYA archive. http://www.dragonI.net/software/tya/, 1998.

[26] LAND AY, J. A., AND KAUFMANN, T. User interface issues in mobile computing. In Pro-

ceedings of the 4th IEEE Workshop on Workstation Operating Systems (Napa, CA, October

1993), IEEE, pp. 40-47.

[27] LANGE, D., AND OSHIMA, M. Programming and Deploying Mobile Agents With Java

Aglets. No. ISBN 0-201-32582-9. Addison-Wesley Publishing Company, August 1998.

[28] LEI, H., AND DUCHAMP, D. An analytical approach to file prefetching. In Proceedings of

the 1997 USENIX Annual Technical Conference (Anaheim, CA,' January 1997).

[29] W3 CONSORTIUM. WWW names and addresses, URIs, URLs, URNs. http://www.w3.org/

/hypertext/WWW/Addressing/Addressing.html, November 1994.

[30] W3 CONSORTIUM. HyperText Markup Language (HTML), http://www.w3.org/hypertext/

WWW/MarkUp/MarkUp.htwl, March 1995.

[31] Microsoft internet explorer, http://www.microsoft.com/windows/ie/, 1998.

[32] NETSCAPE. Netscape communicator and netscape navigator news. http://

home.netscape.com/browsers/index.html, 1998.

[33] NOBLE, B. D. Mobile Data Access. PhD thesis, Carnegie Mellon University, 1998.

[34] NOBLE, B. D., PRICE, M., AND SATYANARAYANAN, M. A programming interface for

application-aware adaptation in mobile computing. In Proceedings of the Second Sympo-

sium on Mobile and Location-Independent Computing (April 1995), USENLX.

[35] OBJECT MANAGEMENT GROUP AND X/OPEN. The Common Object Request Broker:

Architecture and Specification. OMG Document Number 91.12.1, Revision 1.1.

108 BIBLIOGRAPHY

[36] OCKERBLOOM, J. Introducing structured data types into internet-scale information
systems. Ph.D. thesis proposal, Carnegie Mellon University, May 1993. http://
www.cs.cmu.edu:8001/afs/cs.cmu.edu/user/spok/www/proposal.html.

[37] OCKERBLOOM, J. Mediating Among Diverse Data Formats. PhD thesis, Carnegie Mellon
University, 1998.

[38] ORACLE. Oracle in motion. Technical product summary, Oracle, September 1994.

[39] OUSTERHOUT, J. Tel: An embeddable command language. In Proceedings of the Winter
1990 Usenix Conference (Washington, DC, January 1990), Usenix, pp. 133-146.

[40] ROMKEY, J. A nonstandard for transmission of IP datagrams over serial lines: SLIP. RFC
1055, Network Working Group, June 1988.

[41] ROSE, M. T. The Simple Book: An Introduction to Networking Management, 2nd ed.
No. ISBN 0-134-51659-1. Prentice-Hall Press, 1996. April.

[42] SATYANARAYANAN, M. Mobile computing: Past, present, & future. In Proceedings of the
IBM Workshop on Mobile Computing (Austin, TX, January 1994), IBM.

[43] SATYANARAYANAN, M., KISTLER, J. J., MUMMERT, L. B., EBLING, M. R., KUMAR,

P., AND Lu, Q. Experience with disconnected operation in a mobile environment. In
Proceedings of the Usenix Mobile and Location-Independent Computing Symposium (Cam-
bridge, MA, August 1993), Usenix.

[44] SCHILIT, B. N., ADAMS, N., GOLD, R., TSO, M. M., AND WANT, R. The PARCtab mo-
bile computing system. In Proceedings of the 4th IEEE Workshop on Workstation Operating
Systems (Napa, CA, Oct 1993), IEEE.

[45] SCHILIT, B. N., THEIMER, M. M., AND WELCH, B. B. Customizing mobile applica-
tions. In Proceedings of the Usenix Mobile and Location-Independent Computing Sympo-
sium (Cambridge, MA, August 1993), Usenix, pp. 129-138.

[46] SIMPSON, W. The point-to-point protocol (PPP). RFC 1661, Network Working Group,
July 1994.

[47] SOLEY, R. M. The Common Object Request Broker: Architecture and Specification, sec-
ond ed. Object Management Group and X/Open, 1992. OMG Document Number 92.11.1,
Revision 2.0.

BIBLIOGRAPHY 109

[48] SOMMERER, A. The Java archive (jar) file format. http://www.javasoft.com/docsAjooks/
tutorial/jar/index.html, 1998.

[49] SUNSOFT. The HOTJAVA browser: A white paper. http://java.sun.com/L0alpha2/doc/
overview/hotjava/index.html, 1995.

[50] SUNSOFT. The java language: A white paper, http://java.sun.eom/l.0alpha2/doc/overview/

java/index.html, 1995.

[51] TRUMAN, T., ET AL . Infopad: A system design for portable multimedia access. In Proceed-
ings of the Seventh Annual International Conference on Wireless Communications (Calgary,
Canada, 1994).

[52] US CENSUS BUREAU. TIGER mapping service: The "coast to coast" digital map database.
http://tiger.census.gov/instruct.html, 1998.

[53] US CENSUS BUREAU. U.S. gazetteer, http://www.census.gov/cgi-bin/gazetteer, 1998.

[54] VOELKER, G. M., AND BERSHAD, B. N. Mobisaic: An information system for a mobile
wireless computing environment. In Proceedings of the Workshop on Mobile Computing
Systems and Applications (Santa Cruz, CA, December 1994), IEEE, pp. 185-190.

[55] WATSON, T. Effective wireless communication through application partitioning. In Pro-
ceedings of the Fifth Workshop on Hot Topics in Operating Systems (Orcas Island, WA, May
1995), IEEE.

[56] WATSON, T. Wit: An infrastructure for wireless palmtop computing. Ph.D. qualifier paper,
University of Washington, 1995.

[57] WETHERALL, D. J., GUTTAG, J. V., AND TENNENHOUSE, D. L. ANTS: A toolkit for
building and dynamically deploying network protocols. In Proceedings of the First IEEE
Conference on Open Architectures and Network Programming (San Francisco, CA, April
1998), IEEE.

[58] WHITE, J. E. Telescript technology: Scenes from the electronic marketplace. General
magic white paper, General Magic, 1994.

[59] WHITE, J. E. Telescript technology: The foundation for the electronic marketplace. Gen-
eral magic white paper, General Magic, 1994.

[60] ZENEL, B. A Proxy Based Filtering Mechanism for the Mobile Environment. PhD thesis,
Columbia University, 1998.

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

